一个质量为4kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数μ=0.1。从t=0开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F随时间的变化规律如图所示。(g取10m/s2)求:①0到2s和2s到4s的加速度。②83秒内物体的位移大小。
如图所示,一轻质三角形框架B处悬挂一定滑轮(质量可忽略不计)。一体重为500N的人通过跨定滑轮的轻绳匀速提起一重为300N的物体。(1)此时人对地面的压力是多大?(2)斜杆BC,横杆AB所受的力是多大?
如图所示,物体A重40N,物体B重20N,A与B、B与地的动摩擦因数相同,物体B用细绳系住,当水平力F= 32N时,才能将A匀速拉出,请画出A的受力示意图并求接触面间的动摩擦因数。
(16分)如图所示,在坐标系的第一、四象限存在一宽度为a、垂直纸面向外的有界匀强磁场,磁感应强度的大小为B;在第三象限存在与y轴正方向成θ=60°角的匀强电场。一个粒子源能释放质量为m、电荷量为+q的粒子,粒子的初速度可以忽略。粒子源在点P(,)时发出的粒子恰好垂直磁场边界EF射出;将粒子源沿直线PO移动到Q点时,所发出的粒子恰好不能从EF射出。不计粒子的重力及粒子间相互作用力。求: ⑴匀强电场的电场强度; ⑵PQ的长度; ⑶若仅将电场方向沿顺时针方向转动60º角,粒子源仍在PQ间移动并释放粒子,试判断这些粒子第一次从哪个边界射出磁场并确定射出点的纵坐标范围。
(16分)在竖直平面内固定一轨道ABCO, AB段水平放置,长为4 m,BCO段弯曲且光滑,轨道在O点的曲率半径为1.5 m;一质量为1.0 kg、可视作质点的圆环套在轨道上,圆环与轨道AB段间的动摩擦因数为0.5。建立如图所示的直角坐标系,圆环在沿x轴正方向的恒力F作用下,从A(-7,2)点由静止开始运动,到达原点O时撤去恒力F,水平飞出后经过D(6,3)点。重力加速度g取10m/s2,不计空气阻力。求: ⑴圆环到达O点时对轨道的压力;⑵恒力F的大小;⑶圆环在AB段运动的时间。
(15分) 如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ, N、Q两点间接有阻值为R的电阻。整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m、阻值也为R的金属杆ab垂直放在导轨上,杆ab由静止释放,下滑距离x时达到最大速度。重力加速度为g,导轨电阻不计,杆与导轨接触良好。求:⑴杆ab下滑的最大加速度;⑵杆ab下滑的最大速度;⑶上述过程中,杆上产生的热量。