如图,将质量为m的子弹,以水平速度v0射向静止在光滑水平面上质量为M的木块,第一次将木板固定不动,子弹刚好可以打穿木块,第二次撤去外力,让木块可以自由滑动,子弹打入木块三分之一深度就相对木块静止,求M与m的比值。
1879年美国物理学家霍尔在研究载流导体在磁场中受力情况时,发现了一种新的电磁效应:将导体置于磁场中,并沿垂直磁场方向通入电流,则在导体中垂直于电流和磁场的方向会产生一个横向电势差,这种现象后来被称为霍尔效应,这个横向的电势差称为霍尔电势差。如图甲所示,某长方体导体abcda′b′c′d′的高度为h、宽度为l,其中的载流子为自由电子,其电荷量为e,处在与ab b′a′面垂直的匀强磁场中,磁感应强度为B0。在导体中通有垂直于bcc′b′面的电流,若测得通过导体的恒定电流为I,横向霍尔电势差为UH,求此导体中单位体积内自由电子的个数。对于某种确定的导体材料,其单位体积内的载流子数目n和载流子所带电荷量q均为定值,人们将H=定义为该导体材料的霍尔系数。利用霍尔系数H已知的材料可以制成测量磁感应强度的探头,有些探头的体积很小,其正对横截面(相当于图14甲中的ab b′a′面)的面积可以在0.1cm2以下,因此可以用来较精确的测量空间某一位置的磁感应强度。如图14乙所示为一种利用霍尔效应测磁感应强度的仪器,其中的探头装在探杆的前端,且使探头的正对横截面与探杆垂直。这种仪器既可以控制通过探头的恒定电流的大小I,又可以监测出探头所产生的霍尔电势差UH,并自动计算出探头所测位置磁场的磁感应强度的大小,且显示在仪器的显示窗内。①在利用上述仪器测量磁感应强度的过程中,对探杆的放置方位有何要求;②要计算出所测位置磁场的磁感应强度,除了要知道H、I、UH外,还需要知道哪个物理量,并用字母表示。推导出用上述这些物理量表示所测位置磁感应强度大小的表达式。
在如图所示的电路中,两平行正对金属板A、B水平放置,两板间的距离d=4.0cm。电源电动势E=400V,内电阻r=20Ω,电阻R1=1980Ω。闭合开关S,待电路稳定后,将一带正电的小球(可视为质点)从B板上的小孔以初速度v0=1.0m/s竖直向上射入两板间,小球恰好能到达A板。若小球所带电荷量q=1.0×10-7C,质量m=2.0×10-4kg,不考虑空气阻力,忽略射入小球对电路的影响,取g=10m/s2。求:A、B两金属板间的电压的大小U;滑动变阻器消耗的电功率P滑;电源的效率η。
如图甲所示,在水平地面上固定一对与水平面倾角为α的光滑平行导电轨道,轨道间的距离为l,两轨道底端的连线与轨道垂直,顶端接有电源。将一根质量为m的直导体棒ab放在两轨道上,且与两轨道垂直。已知轨道和导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为I,方向由a到b,图11乙为图甲沿a→b方向观察的平面图。若重力加速度为g,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止。请在图11乙所示的平面图中画出导体棒受力的示意图;求出磁场对导体棒的安培力的大小;如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度B的最小值的大小和方向。
如图所示,在光滑水平面上有一长为L1、宽为L2的单匝矩形闭合导体线框abcd,处于磁感应强度为B的有界匀强磁场中,其ab边与磁场的边界重合。线框由同种粗细均匀的导线制成,它的总电阻为R。现将用垂直于线框ab边的水平拉力,将线框以速度v向右沿水平方向匀速拉出磁场,此过程中保持线框平面与磁感线垂直,且ab边与磁场边界平行。求线框被拉出磁场的过程中:通过线框的电流;线框中产生的焦耳热;线框中a、b两点间的电压大小。
两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=50g,电阻均为R=1.0Ω,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度随时间变化的图像如图乙所示(在0~1.0s和2.0~3.0s内,cd做匀变速直线运动)。求在0~1.0s时间内,回路中感应电流的大小;求在0~3.0s时间内,ab杆在水平导轨上运动的最大速度;已知1.0~2.0s内,ab杆做匀加速直线运动,在图丙中画出在0~3.0s内,拉力F随时间变化的图像。(不需要写出计算过程,只需画出图线)