如图12表示,宽度L=0.20m的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感强度大小为B=0.50T。一根导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度u=10m/s,在运动过程中保持导体棒与导轨垂直。求:(1)求闭合回路中产生的感应电流。(2)作用在导体棒上的拉力大小。(3)在导体棒移动30cm的过程中,电阻R上产生的热量。
用磁场可以约束带电离子的轨迹,如图所示,宽d=2cm的有界匀强磁场的横向范围足够大,磁感应强度方向垂直纸面向里,B=1T.现有一束带正电的粒子从O点以v=2×106m/s的速度沿纸面垂直边界进入磁场.粒子的电荷量q=1.6×10﹣19C,质量m=3.2×10﹣27kg.求: (1)粒子在磁场中运动的轨道半径r和运动时间t是多大? (2)粒子保持原有速度,又不从磁场上边界射出,则磁感应强度最小为多大?
如图中电源的电动势E=12V,内电阻r=0.5Ω,将一盏额定电压为8V,额定功率为16W的灯泡与一只线圈电阻为0.5Ω的直流电动机并联后和电源相连,灯泡刚好正常发光,通电100min,问: ①电源提供的能量是多少? ②电流对电动机做功是多少? ③电动机的线圈产生的热量是多少? ④电动机的效率是多少?
在平面直角坐标系xOy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求 (1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t.
在相互垂直的匀强电场和匀强磁场中,有一倾角为θ,足够长的光滑绝缘斜面,磁感应强度为B,方向垂直纸面向外,电场方向竖直向上.有一质量为m,带电量为十q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图所示,若迅速把电场方向反转竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?
如图所示,在直角区域aob内,有垂直纸面向里的匀强磁场,一对正、负电子从o点沿纸面以相同速度射入磁场中,速度方向与边界ob成30°角,求正、负电子在磁场中运动的时间之比.