如图所示,长为l的轻绳一端固定,另一端系质量为m小球,现将绳拉至与竖起方向成角,将球由静止释放。不计空气阻力,求:(1)球到达最低点时的速度大小(2)在最低点球以对绳拉力的大小
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态。可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回。已知R=0.4 m,l=2.5 m,v0=6 m/s,物块质量m=1 kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计。取g=10 m/s2。求:(1)物块经过圆轨道最高点B时对轨道的压力;(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动。
我国的“探月工程”计划将于2017年宇航员登上月球。若宇航员登上月球后,在距离月球水平表面h高度处,以初速度v0水平拋出一个小球,测得小球从抛出点到落月点的水平距离s。求:(1)月球表面重力加速度的大小;(2)小球落月时速度v的大小。
如图,竖直平面内放着两根间距L = 1m、电阻不计的足够长平行金属板M、N,两板间接一阻值R= 2Ω的电阻,N板上有一小孔Q,在金属板M、N及CD上方有垂直纸面向里的磁感应强度B0= 1T的有界匀强磁场,N板右侧区域KL上、下部分分别充满方向垂直纸面向外和向里的匀强磁场,磁感应强度大小分别为B1=3T和B2=2T。有一质量M = 0.2kg、电阻r =1Ω的金属棒搭在MN之间并与MN良好接触,用输出功率恒定的电动机拉着金属棒竖直向上运动,当金属棒达最大速度时,在与Q等高并靠近M板的P点静止释放一个比荷的正离子,经电场加速后,以v =200m/s的速度从Q点垂直于N板边界射入右侧区域。不计离子重力,忽略电流产生的磁场,取g=。求:(1)金属棒达最大速度时,电阻R两端电压U;(2)电动机的输出功率P;(3)离子从Q点进入右侧磁场后恰好不会回到N板,Q点距分界线高h等于多少。
如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6 cos37°=0.8)(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。
如图所示,电压为U的两块平行金属板MN,M板带正电。X轴与金属板垂直,原点O与N金属板上的小孔重合,在O≤X≤d区域存在垂直纸面的匀强磁场 (图上未画出)和沿y轴负方向火小为的匀强电场,与E在y轴方向的区域足够大。有一个质量为m,带电量为q的带正电粒子(粒子重力不计),从靠近M板内侧的P点(P点在X轴上)由静止释放后从N板的小孔穿出后沿X轴做直线运动;若撤去磁场,在第四象限X>d的某区域加上左边界与y轴平行且垂直纸面的匀强磁场B2(图上未画出),为了使粒子能垂直穿过X轴上的Q点,Q点坐标为()。求(1)磁感应强度的大小与方向;(2)磁感应强度B2的大小与方向;(3)粒子从坐标原点O运动到Q点所用的时间t。