制备纳米薄膜装置的工作电极可简化为真空中间距为d的两平行极板,如图甲所示,加在极板A,B间的电压UAB作周期性变化,其正向电压为U0,反向电压为-kU0k>1, 电压变化的周期为2r,如图乙所示.在t=0时,极板B附近的一个电子,质量为m、电荷量为e,受电场作用由静止开始运动.若整个运动过程中,电子未碰到极板A,且不考虑重力作用. (1)若k=54,电子在0-2r时间内不能到达极板A,求d应满足的条件; (2)若电子在0~200t时间内未碰到极板B,求此运动过程中电子速度v随时间t变化的关系;
(3)若电子在第N个周期内的位移为零,求k的值。
如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧。 (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)
如图所示,第二、三象限存在足够大的匀强电场,电场强度为E,方向平行于纸面向上,一个质量为m,电量为q的正粒子,在x轴上M点(-4r,0)处以某一水平速度释放,粒子经过y轴上N点(0,2r)进入第一象限,第一象限存在一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向外,第四象限存在另一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向里,不计粒子重力,r为坐标轴每个小格的标度,试求: (1)粒子初速度v0; (2)粒子第1次穿过x轴时的速度大小和方向; (3)画出粒子在磁场中运动轨迹并求出粒子第n次穿过x轴时的位置坐标。
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求 (1)导轨顶端与磁场上边界ef之间的距离S; (2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
如图所示,两平行导轨间距L=0.1m,足够长光滑的倾斜部分和粗糙的水平部分圆滑连接,倾斜部分与水平面的夹角θ=30°,垂直斜面方向向上的磁场磁感应强度B=0.5T,水平部分没有磁场.金属棒ab质量m=0.005kg、电阻r=0.02Ω,运动中与导轨始终接触良好,并且垂直于导轨.电阻R=0.08Ω,其余电阻不计.当金属棒从斜面上离地高h=1.0m以上的任何地方由静止释放后,在水平面上滑行的最大距离x都是1.25m.取g=10m/s2,求: (1)金属棒在斜面上的最大速度; (2)金属棒与水平面间的动摩擦因数; (3)从高度h=1.0m处滑下后电阻R上产生的热量.
一活塞将一定质量的理想气体封闭在汽缸内,初始时气体体积为3.0×10-3 m3.用DIS实验系统测得此时气体的温度和压强分别为300 K和1.0×105 Pa.推动活塞压缩气体,测得气体的温度和压强分别为320K和1.0×105Pa. (1)求此时气体的体积. (2)再保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为8.0×104 Pa,求此时气体的体积.