在建筑装修中,工人用质量为5.0kg的磨石A对地面和壁进行打磨,已知A与地面、A与斜壁之间的动摩擦因数μ均相同。(g取10m/s2)[(1)当A受到水平方向的推力F1=25N打磨地面时,A恰好在水平地面上作匀速直线运动,求A与地面间的动摩擦因数μ。(2)若用A对倾角θ=37°的斜壁进行打磨(如图),当对A加竖直向上推力F2=60N时,则磨石A从静止开始沿斜壁向上运动2m(斜壁长>2m)所需时间为多少?(sin37°="0.6," cos37°=0.8,)
(1) 下列说法正确的是:
E.次声波是频率低于20Hz的声波,,它比超声波更易发生衍射 F.一列加速驶出车站的火车,站台上的人听到的汽笛音调变高了(2) 空间中存在一列向右传播的简谐横波,波速为2m/s,在t=o时刻的波形如图甲所示.试写出x="2.0" m处质点的位移一时间关系表达式 ;若空间中存在振幅不同,波速相同的两列机械波相向传播,它们的周期均为T,t=0时刻两列波的波形如图乙所示,请定性画出t1=T/4时刻的波形图。(3) 如图所示,一束激光从O点由空气射入厚度均匀的介质,经下表面反射后,从上面的A点射出。已知入射角为i,A与O相距l介质的折射率为n,试求介质的厚度d。
图中左边有一对平行金属板,两板相距为d,电压为u,两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
如图所示,传送带以v为l0m/s速度向左匀速运行,BC段长L为2m,半径R为1.8m的光滑圆弧槽在B点与水平传送带相切.质量m为0.2kg的小滑块与传送带间的动摩擦因数为0.5,g取l0m/s2,不计小滑块通过连接处的能量损失.求: (1) 小滑块从M处无初速度滑下,到达底端B时的速度; (2) 小滑块从M处无初速度滑下后,在传送带上向右运动的最大距离及此过程产生的 热量; (3) 将小滑块无初速度放在传送带C端,要使小滑块能通过N点,传送带BC段至少为多长?
如图甲所示,间距为L、电阻不计的光滑导轨固定在倾角为θ的斜面上.在MNPQ矩形区域内有方向垂直于斜面的匀强磁场,磁感应强度为B;在CDEF矩形区域内有方向垂直于斜面向下的磁场,磁感应强度Bt随时间t变化的规律如图乙所示(tx是未知量),Bt的最大值为2B.现将一根质量为m、电阻为R、长为L的金属细棒cd跨放在MNPQ区域间的两导轨上,并把它按住,使其静止.在t=O时刻,让另一根长为L的金属细棒ab(其电阻Rx是未知量)从CD上方的导轨上由静止开始下滑,同时释放cd棒。已知CF长度为2L,两根细棒均与导轨良好接触,在ab从图中位置运动到EF处的过程中,cd棒始终静止不动,重力加速度为g. (1)求上述过程中cd棒消耗的电功率,并确定MNPQ区域内磁场的方向.(2) ab棒质量(3)确定未知量Rx及tx的值.
设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示。为了安全,返回舱与轨道舱对接时,必须具有相同的速度。已知返回舱返回过程中需克服火星的引力做功,返回舱与人的总质量为m,火星表面的重力加速度为g,火星的半径为R,轨道舱到火星中心的距离为r,不计火星表面大气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱至少需要获得多少能量才能返回轨道舱?