在建筑装修中,工人用质量为5.0kg的磨石A对地面和壁进行打磨,已知A与地面、A与斜壁之间的动摩擦因数μ均相同。(g取10m/s2)[(1)当A受到水平方向的推力F1=25N打磨地面时,A恰好在水平地面上作匀速直线运动,求A与地面间的动摩擦因数μ。(2)若用A对倾角θ=37°的斜壁进行打磨(如图),当对A加竖直向上推力F2=60N时,则磨石A从静止开始沿斜壁向上运动2m(斜壁长>2m)所需时间为多少?(sin37°="0.6," cos37°=0.8,)
将电量q1=+1.0×10-8C的点电荷,在A点时所受电场力大小是2.0×10-5N。将它从零电势O点处移到电场中A点时,需克服电场力做功2.0×10-6J.求:(1)A点处的电场强度的大小;(2)电势差UAO;(3)若将q1换成q2=-2.0×10-8C的点电荷,求q2从O点移动到A点过程中q2所受电场力所做的功.
如图所示,绝缘的水平桌面上方有一竖直方向的矩形区域,该区域是由三个边长均为L的正方形区域ABFE、BCGF和CDHG首尾相接组成的,且矩形的下边EH与桌面相接。三个正方形区域中分别存在方向为竖直向下、竖直向上、竖直向上的匀强电场,其场强大小比例为1∶1∶2。现有一带正电的滑块以某一初速度从E点射入场区,初速度方向水平向右,滑块最终恰从D点射出场区。已知滑块在ABFE区域所受静电力和所受重力大小相等,桌面与滑块之间的动摩擦因数为0.125,重力加速度为g,滑块可以视作质点。求:(1)滑块进入CDHG区域时的速度大小v0;(2)滑块在ADHE区域运动的总时间。
如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中。现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g。求:(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小;(2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小;(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
如图所示,一固定的足够长的粗糙斜面与水平面夹角θ=30º。一个质量m=1kg的小物体(可视为质点),在F=10 N的沿斜面向上的拉力作用下,由静止开始沿斜面向上运动。已知斜面与物体间的动摩擦因数,取。试求: (1)物体在拉力F作用下运动的加速度a1; (2)若力F作用1.2 s后撤去,物体在上滑过程中距出发点的最大距离s;
两块水平平行放置的导体板如图甲所示,大量电子(质量为m、电荷量为e)由静止开始,经电压为U0的电场加速后,连续不断地沿平行板的方向从两板正中间射入两板之间.当两板均不带电时,这些电子通过两板之间的时间为3t0;当在两板间加如图乙所示的周期为2t0、恒为U0的周期性电压时,恰好能使所有电子均从两板间通过(不计电子重力).求:(1) 画出电子在t=0时和t=t0时进入电场后沿电场力方向的速度vy随时间t变化的vy-t图象;(2) 这些电子通过两板之间后,侧向位移(垂直于入射速度方向上的位移)的最大值和最小值分别是多少?[(3) 侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少?