(1)用水平拉力将小球从平衡位置P点很缓慢地移动到Q点,此时轻绳与竖直方向的夹角为,求拉力做的功。(2)在Q点撤去拉力,让小球从静止开始下摆,求小球经过P点时的速度。
质量为的小车在光滑的水平轨道上匀速向右运动,速度为。在小车下方中心处悬挂一根长长的轻绳,绳下端拴一个质量的钢块,钢块随小车一起运动,轻绳保持竖直方向,如图所示。一颗质量为的子弹从左边沿水平方向向右射来,速度为,与钢块发生碰撞,碰撞时间极短,碰后子弹以的速度反向弹回。求钢块在此后的运动过程中离最低点的高度的最大值。
如图所示,一根轻杆长为2 l, 它的左端O点为固定转动轴, 轻杆可以绕 O轴在竖直平面内无摩擦转动, 它的中点及右端各固定一个小球A和B, 两球的质量分别是m和 2 m , 重力加速度为g。现用外力使杆处于水平位置, 从静止释放。求从开始运动到达杆处于竖直位置的过程中, 杆的作用力对B球所做的功。
蹦床运动是一种新兴的体育项目,运动员在下落弹起的过程中可做出各种高难的体操动作,显示人的健康美.若某位运动员从3.2m处下落,被弹起升到4.05m,其历时2.2s,运动员质量为60kg,试分析:(1)运动员和蹦床面之间的平均作用力是多大?(2)忽略空气阻力及蹦床阻力时,运动员在与蹦床接触过程中做了多少功?(3)运动员在全过程中共经历了几个运动过程?
如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R、A端与圆心O等高,AD为水平面,B端在O的正上方,一个小球自A点正上方由静止释放,自由下落至A点进入圆轨道并恰能到达B点,求:(1)释放点距A点的竖直高度;(2)落点C与A点的水平距离;
质量为0.4kg的小物体固定在直棒的一端,棒长为1.0m,,其重力不计,使其形成一个摆,该物体被推向一侧直到棒与竖直线成53°角.试问:(1)小物体应以多大的切向速率VA从A点出发,才能达到最高点C时具有切向速率3m/s?(2)小物体以速度VA从A点出发时,通过最低点B时的速率是多大? (3)若小物体以(1)中的速率VA从A点出发,但方向却相反,它到达C点的速率是多少?(4)若以同样长的绳子代替直棒,小物体仍以(1)中的条件出发,到达某一点D时绳子中的张力为零?(5)在D点时的速率是多少?(6)过D点后小物体的运动情况将如何?