(1)若在y≤0的空间存在垂直于纸面向内的匀强磁场,求该粒子从O到C经历的时间及对应的磁感应强度B.(2)若仅在空间恰当的位置D处(D点图中未画出)放置一负点电荷,也能使该粒子从O点发出, 速率不变地经过C点,求D点的坐标及该负点电荷的电量Q(已知静电力常量为K).
如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端吊一个质量为m的铁球(可视作质点),球离地的高度h=L,当绳受到大小为3mg的拉力时就会断裂。现让环与球一起以的速度向右运动,在A处环被挡住而立即停止,A离右墙的水平距离也为L。不计空气阻力,已知当地的重力加速度为g。试求:(1)在环被挡住而立即停止时绳对小球的拉力大小;(2)在以后的运动过程中,球的第一次碰撞点离墙角B点的距离是多少?
过山车是游乐场中常见的设施。图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,、、分别是三个圆形轨道的最低点,、间距与、间距相等,半径、。一个质量为g的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,、间距。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二个圆形轨道,、间距应是多少; (3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。
如图所示,一个水平放置的圆桶绕轴匀速转动,转动角速度="2.5" rad/s,桶壁上P处有一圆孔,桶璧很薄,桶的半径R=2m。当圆孔运动到桶的上方时,在圆孔的正上方h=3.2m处有一个小球由静止开始下落,已知圆孔的半径略大于小球的半径。试通过计算判断小球是否和圆桶碰撞(不考虑空气阻力,g=10)
如图所示,内半径为R的光滑圆轨道竖直放置,长度比2R稍小的轻质杆两端各固定一个可视为质点的小球A和B,把轻杆水平放入圆形轨道内,若mA=2m、mB=m,重力加速度为g,现由静止释放两球使其沿圆轨道内壁滑动,当轻杆到达竖直位置时,求:A、B两球的速度大小;A球对轨道的压力;
某球形天体的密度为ρ0,引力常量为G.证明对环绕密度相同的球形天体表面运行的卫星,运动周期与天体的大小无关.(球的体积公式为,其中R为球半径)若球形天体的半径为R,自转的角速度为,表面周围空间充满厚度(小于同步卫星距天体表面的高度)、密度ρ=的均匀介质,试求同步卫星距天体表面的高度.