如图所示,一个边长为L的正方形金属框,质量为m,电阻为R .用细线把它悬挂于一个有界的磁场边缘。金属框的上半部处于磁场内,下半部处于磁场外。磁场随时间均匀变化满足B=kt规律。已知细线所能承受的最大拉力T=2mg.求从t=0时起,经多长时间细线会被拉断。
消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下。假设一名质量为60kg、训练有素的消防队员从七楼(即离地面18m的高度)抱着竖直的杆以最短的时间滑下。已知杆的质量为200kg,消防队员着地的速度不能大于6m/s,手和腿对杆的最大压力为1800N,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g=10m/s2。假设杆是搁在地面上的,杆在水平方向不能移动。试求:(1)消防队员下滑过程中的最大速度;(2)消防队员下滑过程中杆对地面的最大压力;(3)消防队员下滑的最短的时间。
如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ = 30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求:(1)粒子能从ab边上射出磁场的v0大小范围.(2)如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间.
.如图所示,质量为M的长滑块静止在光滑水平面上,左侧固定一劲度系数k足够大的水平轻质弹簧,右侧用一不可伸长的细轻绳连接于竖直墙上,细绳所能承受的最大拉力为T。使一质量为m、初速度为v0的小物块,在滑块上无摩擦地向左滑动,而后压缩弹簧。(弹簧弹性势能的表达式,其中k为劲度系数,x为弹簧的压缩量)(1)给出细绳被拉断的条件. (2)滑块在细绳拉断后被加速的过程中,所能获得的最大向左加速度为多少.
某校课外活动小组,自制一枚土火箭,火箭在地面时的质量为3kg。设火箭发射实验时,始终在垂直于地面的方向上运动。火箭点火后可认为作匀加速运动,经过4s到达离地面40m高处燃料恰好用完。若空气阻力忽略不计,g取10m/s2。求:(1)燃料恰好用完时火箭的速度为多大?(2)火箭上升离地面的最大高度是多大?(3)火箭上升时受到的最大推力是多大?
一个质量为0.2 kg的小球用细线吊在倾角θ=53°的斜面顶端,如图2-6,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.