真空中有两个相距0.1m、带电量相等的点电荷,它们间的静电力的大小为10-3N,求每个点电荷所带电荷量是多少?
如图所示,质量为m,带电量为q的小球以初速v0从斜面上水平抛出,并落在斜面上.已知斜面倾角为θ,重力加速度为g,空间存在着方向水平向右的匀强电场,场强大小为E.求小球运动过程中离斜面的最远距离以及离出发点的最远距离各是多少?
测定电子荷质比e/m的精确的现代方法之一是双电容器法,装置如图所示.在真空管中由阴极K发射出电子,其初速度可以忽略不计.此电子被阴极K与阳极A间的电场加速后穿过屏障D1上的小孔,然后顺序穿过电容器C1、屏障D2上的小孔和第二个电容器C2而射到荧光屏F上.阳极与阴极间的电势差为U.在电容器C1、C2之间加有频率为f的完全相同的交流电压,C1、C2之间的距离为l.选择频率f使电子束在荧光屏上的亮点不发生偏转,试证明电子的荷质比为.其中n为奇数.
如图所示,两块平行金属板,相距为d.加上如图所示的电压,电压的最大值为U,周期为T.现有一束离子束,其中每个粒子的电量为q、质量为m,从与两板等距处沿两板平行的方向连续射入,设粒子通过平行板间区域所用的时间为T(与电压的变化周期相同),且所有的粒子都可以通过两板间的空间而打到右端的靶上.(1)粒子打到靶上的位置与靶的中心点O间的距离s与粒子入射时刻t有关,写出s与t[t]的函数关系式.(2)求所有粒子打到靶上的位置的范围(即求出它们与靶的中心点O的最大距离与最小距离).
如图A所示,长为L,相距为d的两平行金属板与一电源相连.一质量为m、电荷量为q的粒子以速度沿平行金属板的中线射入电场区内,从飞入时刻算起,A、B两板间所加电压变化规律如图B所示.为使带电粒子射出电场区时的速度方向正好平行于金属板.求:(1)所加电压的周期T应满足什么条件?(2)所加电压的振幅U0应满足什么条件?
如图所示,A点坐标为(0,10)cm,C点坐标为(10,0)cm,在正方形OABC区域内有匀强电场,场强方向与x轴正向相同,E=N/C.在A点用长L=2cm的细绳悬挂质量为m=0.1kg,电荷量为+q=C的小球.小球原来静止,剪断细绳,小球将开始运动,当它运动到横坐标为10cm的点时,此点纵坐标为多少?