两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?(2)当ab棒的速度变为初速度的时,cd棒的加速度是多少?
如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,长为L的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接右端电路,灯泡的电阻RL=4R,定值电阻R1=2R,电阻箱电阻调到使R2=12R,重力加速度为g,现将金属棒由静止释放,试求:金属棒下滑的最大速度为多大?R2为何值时,其消耗的功率最大?消耗的最大功率为多少?
如图甲所示的轮轴,它可以绕垂直于纸面的光滑固定水平轴O转动.轮上绕有轻质柔软细线,线的一端系一重物,另一端系一质量为的金属杆.在竖直平面内有间距为L的足够长的平行金属导轨PO、EF,在QF之间连接有阻值为R的电阻,其余电阻不计.磁感应强度为B的匀强磁场与导轨平面垂直.开始时金属杆置于导轨下端,将重物由静止释放,重物最终能匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦。若重物的质量为M,则重物匀速下降的速度为多大? 对一定的磁感应强度B,重物的质量M取不同的值,测出相应的重物做匀速运动时的速度,可得出实验图线.图乙中画出了磁感应强度分别为和时的两条实验图线,试根据实验结果计算与的比值。
如图所示,abcd为质量M="2" kg的导轨,放在光滑绝缘的水平面上,另有一根重量m="0.6" kg的金属棒PQ平行于bc放在水平导轨上,PQ棒左边靠着绝缘的竖直立柱ef(竖直立柱光滑,且固定不动),导轨处于匀强磁场中,磁场以cd为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度B大小都为0.8 T.导轨的bc段长L="0.5" m,其电阻r=0.4Ω,金属棒PQ的电阻 R=0.2Ω,其余电阻均可不计.金属棒与导轨间的动摩擦因数=0.2.若在导轨上作用一个方向向左、大小为F="2" N的水平拉力,设导轨足够长,重力加速度g取 10 m/s2,试求: 导轨运动的最大加速度; 导轨的最大速度; 定性画出回路中感应电流随时间变化的图线。
如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R =2 W的电阻连接,右端通过导线与阻值RL =4 W的小灯泡L连接.在CDEF矩形区域内有竖直向上的匀强磁场,CE长l ="2" m,有一阻值r ="2" W的金属棒PQ放置在靠近磁场边界CD处.CDEF区域内磁场的磁感应强度B随时间变化如图乙所示.在t=0至t=4s内,金属棒PQ保持静止,在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,求: 通过小灯泡的电流. 金属棒PQ在磁场区域中运动的速度大小.
如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L,在M点和P点间接一个阻值为R的电阻,在两导轨间OO1O1′O′ 矩形区域内有垂直导轨平面向里、宽为d的匀强磁场,磁感应强度为B.一质量为m,电阻为r的导体棒ab垂直搁在导轨上,与磁场上边边界相距d0.现使ab棒由静止开始释放,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计).求:棒ab在离开磁场下边界时的速度;棒ab在通过磁场区的过程中产生的焦耳热; 试分析讨论ab棒在磁场中可能出现的运动情况。