如图所示,有两个磁感强度均为B、但方向相反的匀强磁场,OP是它们的分界面.有一束电量均为q、但质量不全相同的带电粒子,经过相同的电场加速后,从O处沿与OP和磁场都垂直的方向进入磁场,在这束粒子中有一些粒子的轨迹如图所示.已知OP=L,加速电场的电势差为U,重力不计,问:(1)按图示的轨迹到达P点的每个粒子的质量m为多大?(2)在这束粒子中,质量为多少m的粒子也可能到达P点?(3)若将两磁场磁感强度的大小都减为原来的一半,则这束粒子中,质量为多少m的粒子仍可能到达P点?
如图所示电路,已知电源电动势ε=6.3V,内电阻r=0.5Ω,固定电阻R1=2Ω,R2=3Ω,R3是阻值为5Ω的滑动变阻器。按下电键K,调节滑动变阻器的触点,求通过电源的电流范围。
如图9-4所示,ε1=3V,r1=0.5Ω,R1=R2=5.5Ω,平行板电容器的两板距离d=1cm,当电键K接通时极板中的一个质量m=4×10-3g,电量为q=1.0×10-7C的带电微粒恰好处于静止状态。求:(1)K断开后,微粒向什么方向运动,加速度多大?(2)若电容为1000pF,K断开后,有多少电量的电荷流过R2?
在如图9-3所示电路中,R1=390Ω,R2=230Ω,电源内电阻r=50Ω,当K合在1时,电压表的读数为80V;当K合在2时,电压表的读数为U1=72V,电流表的读数为I1=0.18A,求:(1)电源的电动势(2)当K合在3时,两电表的读数。
如图10-2所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与AB成θ角时,圆环移动的距离是多少?
如图所示,长l的细绳一端系质量m的小球,另一端固定于O点,细绳所能承受拉力的最大值是7mg.现将小球拉至水平并由静止释放,又知图中O′点有一小钉,为使小球可绕O′点做竖直面内的圆周运动.试求OO′的长度d与θ角的关系(设绳与小钉O′相互作用中无能量损失).