如图所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A放在待测处,线圈与测量电量的冲击电流计G串联,当用双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G测出电量Q,就可以算出线圈所在处的磁感应强度B。已知测量线圈共有N匝,直径为d,它和表G串联电路的总电阻为R,则被测处的磁感强度B为多大?
如图5-9所示,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为,碰撞中无机械能损失。重力加速度为g。试求: (1)待定系数β; (2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力; (3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。
如图5-8所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。两滑块一起以恒定的速率v0向右滑动。突然轻绳断开,当弹簧伸至本身的自然长度时,滑块A的速度正好为0。求: (1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep; (2)在以后的运动过程中,滑块B是否会有速度为0的时刻?试通过定量分析证明你的结论.
)如图5-7所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的档板相连,弹簧处于原长时,B恰好位于滑道的末端O点。A与B碰撞时间极短,碰撞后结合在一起共同压缩弹簧。已知在OM段A、B与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g,求 (1)物块A在档板B碰撞瞬间的速度v的大小; (2)弹簧最大压缩时为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
如图5-5所示,质量为的天车静止在光滑轨道上,下面用长为的细线悬挂着质量为的沙箱,一颗质量为的子弹,以的水平速度射入沙箱,并留在其中,在以后运动过程中,求:沙箱上升的最大高度。
汽车进站关闭发动机做匀减速直线运动,当滑行s1=300m时,速度恰好减为初速度的一半,接着又滑行了t2=20s才停止.求:汽车滑行的总时间t,关闭发动机时的速度vo和总位移s.