如图所示,一质量为m的带电小球,用长为l的绝缘细线悬挂在水平向右,场强为E的匀强电场中,静止时悬线与竖直方向成角(<45°)(1)求小球带何种电性及所带电荷量大小;(2)如果不改变电场强度的大小而突然将电场的方向变为竖直向下,带电小球将怎样运动?要求说明理由。(3)电场方向改变后,带电小球的最大速度值是多少?
已知如图,E =6V,r =4Ω,R1=2Ω,R2的变化范围是0~10Ω。求:①电源的最大输出功率;②R1上消耗的最大功率;③R2上消耗的最大功率。
长L=60cm质量为m=6.0×10-2kg,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁感强度为B=0.4T,方向垂直纸面向里的匀强磁场中,如图8所示,若不计弹簧重力,问(1)要使弹簧不伸长,金属棒中电流的大小和方向如何?(2)如在金属中通入自左向右、大小为I=0.2A的电流,金属棒下降=1cm,若通入金属棒中的电流仍为0.2A,但方向相反,这时金属棒下降了多少?
如图所示,两平行光滑导轨相距为L=20cm,金属棒MN的质量为m=10g,电阻R=8Ω,匀强磁场磁感应强度B方向竖直向下,大小为B=0.8T,电源电动势为E=10V,内阻r=1Ω。当电键S闭合时,MN处于平衡,求变阻器的取值为多少?(设θ=45°)
如图22所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)
核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×c/㎏,中空区域内带电粒子具有各个方向的速度。试计算(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。(2)所有粒子不能穿越磁场的最大速度。