质量m=1kg的小车左端放有质量M=3kg的铁块,两者以v0=4m/s的共同速度沿光滑水平面向竖直墙运动,车与墙的碰撞时间极短,无动能损失。铁块与车间的动摩擦因数为μ=1/3,车足够长,铁块不会到达车的右端。从小车第一次与墙相碰开始计时,取水平向右为正方向,g=10m/s2,求:(1)当小车和铁块再次具有共同速度时,小车右端离墙多远?(2)在答卷的图上画出第二次碰撞前,小车的速度时间图象。不要求写出计算过程,需在图上标明图线的起点、终点和各转折点的坐标。
如图13所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场;在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场;在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场.一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限,然后经过x轴上x=-2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y=-2h处的P3点进入第四象限.已知重力加速度为g.求:图13(1)粒子到达P2点时速度的大小和方向;(2)第三象限空间中电场强度和磁感应强度的大小;(3)带电质点在第四象限空间运动过程中最小速度的大小和方向.
磁流体发电是一种新型发电方式,图4中图(1)和图(2)是其工作原理示意图.图(1)中的长方体是发电导管,其中空部分的长、高、宽分别为l、a、b,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻RL相连.整个发电导管处于图(2)中磁场线圈产生的匀强磁场里,磁感应强度为B,方向如图所示.发电导管内有电阻率为ρ的高温、高速电离气体沿导管向右流动,并通过专用管道导出.由于运动的电离气体受到磁场作用,产生了电动势.发电导管内电离气体流速随磁场有无而不同.设发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为v0,电离气体所受摩擦阻力总与流速成正比,发电导管两端的电离气体压强差Δp维持恒定,求:图4(1)不存在磁场时电离气体所受的摩擦阻力F为多大?(2)磁流体发电机的电动势E的大小;(3)磁流体发电机发电导管的输入功率P.
如图2所示,在互相垂直的水平方向的匀强电场(E已知)和匀强磁场(B已知)中,有一固定的竖直绝缘杆,杆上套有一个质量为m、电荷量为+q的小球,它们之间的动摩擦因数为μ.现由静止释放小球,试分析小球运动的加速度和速度的变化情况,并求出最大速度vm(mg>μgE).图2
在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(z轴正方向竖直向上),如图17所示.已知电场方向沿z轴正方向,场强大小为E;磁场方向沿y轴正方向,磁感应强度的大小为B;重力加速度为g.问:一质量为m、带电荷量为+q的从原点出发的质点能否在坐标轴(x、y、z)上以速度v做匀速运动?若能,m、q、E、B、v及g应满足怎样的关系;若不能,请说明理由.图17
如图16所示,在空间存在这样一个磁场区域,以MN为界,上部分的匀强磁场的磁感应强度为B1,下部分的匀强磁场的磁感应强度为B2,B1=2B2=2B0,方向均垂直纸面向内,且磁场区域足够大.在距离界线为h的P点有一带负电荷的离子处于静止状态,某时刻该离子分解成为带电的粒子A和不带电的粒子B,粒子A质量为m、带电荷量为q,以平行于界线MN的速度向右运动,经过界线MN时的速度方向与界线成60°角,进入下部分磁场.当粒子B沿与界线平行的直线到达位置Q点时,恰好又与粒子A相遇.不计粒子的重力,求:图16(1)P、Q两点间距离;(2)粒子B的质量.