将一个动力传感器连接到计算机上,我们就可以测量快速变化的力.某一小球用一条不可伸长的轻绳连接,绳的另一端固定在悬点上.当小球在竖直面内来回摆动时,用动力传感器测得绳子对悬点的拉力随时间变化的曲线如图所示.取重力加速度g = 10m/s2,求绳子的最大偏角θ.
如图 11-20所示光滑平行金属轨道abcd,轨道的水平部分bcd处于竖直向上的匀强磁场中,bc部分平行导轨宽度是cd部分的2倍,轨道足够长。将质量相同的金属棒P和Q分别置于轨道的ab段和cd段。P棒位于距水平轨道高为h的地方,放开P棒,使其自由下滑,求P棒和Q棒的最终速度。
如图11-9所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导轨ab的质量为0.2g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体自由下落0.4s时,突然接通电键K,则:(1)试说出K接通后,ab导体的运动情况。(2)ab导体匀速下落的速度是多少?(g取10m/s2)
如图11-7所示装置,导体棒AB,CD在相等的外力作用下,沿着光滑的轨道各朝相反方向以0.lm/s的速度匀速运动。匀强磁场垂直纸面向里,磁感强度B=4T,导体棒有效长度都是L=0.5m,电阻R=0.5Ω,导轨上接有一只R′=1Ω的电阻和平行板电容器,它的两板间距相距1cm,试求: (l)电容器及板间的电场强度的大小和方向;
如图11-6所示,在跟匀强磁场垂直的平面内放置一个折成锐角的裸导线MON,∠MON=α。在它上面搁置另一根与ON垂直的导线PQ,PQ紧贴MO,ON并以平行于ON的速度V,从顶角O开始向右匀速滑动,设裸导线单位长度的电阻为R0,磁感强度为B,求回路中的感应电流。
如图11-3所示,直角三角形导线框ABC,处于磁感强度为B的匀强磁场中,线框在纸面上绕B点以匀角速度ω作顺时针方向转动,∠B=60°,∠C=90°,AB=l,求A,C两端的电势UAC。