氢原子基态能量E1=-13.6eV,电子绕核做圆周运动的半径r1=0.53×10-10m. 求氢原子处于n=4激发态时:(1)原子系统具有的能量?(2)电子在n=4轨道上运动的动能?(已知能量关系,半径关系×109Nm2/c2)
如图甲所示,两平行金属板间接有如图乙所示的随时间t变化的电压u,两板间电场可看作是均匀的,且两板外无电场,极板长L=0.2 m,板间距离d="0.2" m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线垂直,磁感应强度T,方向垂直纸面向里。现有带正电的粒子流沿两板中线连续射入电场中,已知每个粒子的速度m/s,一荷质比C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。(1)试求带电粒子射出电场时的最大速度。(2)证明任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值。写出表达式并求出这个定值。(3)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。求粒子在磁场中运动的最长时间和最短时间。
如图所示,在光滑绝缘水平桌面上有两个静止的小球A和B,B在桌边缘,A和B均可视为质点,质量均为m=0.2kg,A球带正电,电荷量q=0.1C,B球是绝缘体不带电,桌面离地面的高h=0.05m.开始时A、B相距L=0.1m,在方向水平向右、大小E=10N/C的匀强电场的电场力作用下,A开始向右运动,并与B球发生正碰,碰撞中A、B的总动能无损失,A和B之间无电荷转移.求: A经过多长时间与B碰撞? A、B落地点之间的距离是多大?
地面上有一个半径为R的圆形跑道,高为h的平台边缘上的P点在地面上P′点的正上方,P′与跑道圆心O的距离为L(L>R),如图所示。跑道上停有一辆小车,现从P点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计)。问:(1)当小车分别位于A点和B点时(∠AOB=90°),沙袋被抛出时的初速度各为多大?(2)若小车在跑道上运动,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A点时,将沙袋抛出,为使沙袋能在B处落入小车中,小车的速率v应满足什么条件?
如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B的,方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F,方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.求: (1)EF棒下滑过程中的最大速度. (2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒、导轨的电阻均不计)?
如图所示,上海磁悬浮列车专线西起上海地铁2号线的龙阳路站,东至上海浦东国际机场,专线全长29.863公里。由中德两国合作开发的世界第一条磁悬浮商运线。磁悬浮列车的原理如图所示,在水平面上,两根平行直导轨间有竖直方向且等间距的匀强磁场B1、B2,导轨上有金属框abcd,金属框的面积与每个独立磁场的面积相等。当匀强磁场B1、B2同时以速度v沿直线导轨向右运动时,金属框也会沿直线导轨运动。设直导轨间距为L=0.4m,B1=B2=1T,磁场运动速度为v=5m/s,金属框的电阻为R=2Ω。试求:(1)若金属框不受阻力时,金属框如何运动;(2)当金属框始终受到f=1N的阻力时,金属框相对于地面的速度是多少;(3)当金属框始终受到1N的阻力时,要使金属框维持最大速度,每秒钟需要消耗多少能量?这些能量是谁提供的?