在进行奥斯特的电流磁效应的实验时,要使实验现象明显,通电直导线的放置位置应该是( )
如图(a)所示,两条间距为h的水平虚线之间存在方向水平向里的匀强磁场,磁感应强度大小按图(b)中B-t图象变化(图中Bo已知)。现有一个“日”字形刚性金 属,线框ABCDEF,它的质量为m,EF中间接有一开关S,开关S闭合时三条水平边框的电阻均为R,其余各边电阻不计。AB=CD=EF=L,AD=DE=h。用两根轻质的绝缘细线把线框竖直悬挂住,AB边恰好在磁场区域M1 N1和M2N2的正中间,开始开关S处于断开状态。t0(未知)时刻细线恰好松弛,此后闭合开关同时剪断两根细线,当CD边刚进入磁场上边界Mi Ni时线框恰好做匀速运动(空气阻力不计)。求:(1)t0的值;(2)线框EF边刚离开磁场下边界M2N2时的速度;(3)从剪断细线到线框EF边离开磁场下边界M2N2的过程中金属线框中产生的焦耳热。
滑板运动是一项陆地上的“冲浪运动”,具有很强的观赏性与趣味性。下坡式滑行轨道可H简化为如下模型:如图所示,abcdf为同一竖直平面内的滑行轨道,其中ab、df两段均为倾角=37o的斜直粗糙轨道,bc为一段半径为R=5m的光滑圆弧,圆弧与ab相切于磊点,圆弧圆心O在c点的正上方。已知ab之间高度差H1=5rn,cd之间高度差H2=2.25m,运动员连同滑板的总质量m=60kg。运动员从a点由静止开始下滑后从C点水平飞出,落在轨道上的e点,经短暂的缓冲动作后沿斜面方向下滑。de之间的高度差H3="9" m,运动员连同滑板可视为质点,忽略空气阻力,取g =10m/s2,sin37o=0.6,cos37o=0.8 。求:(1)运动员刚运动到c点时的速度大小;(2)运动员(连同滑板)刚运动到c点时对轨道的压力;(3)运动员(连同滑板)在由a点运动到b点过程中阻力对它做的功。
(22分)如图所示,在两块水平金属极板间加有电压U构成偏转电场,一束比荷为带正电的粒子流(重力不计),以速度vo =104m/s沿水平方向从金属极板正中间射入两板。粒子经电场偏转后进入一具有理想边界的半圆形变化磁场区域,O为圆心,区域直径AB长度为L=1m,AB与水平方向成45°角。区域内有按如图所示规律作周期性变化的磁场,已知B0="0." 5T,磁场方向以垂直于纸面向外为正。粒子经偏转电场后,恰好从下极板边缘O点与水平方向成45°斜向下射入磁场。求:(1)两金属极板间的电压U是多大?(2)若T0 =0.5s,求t=0s时刻射人磁场的带电粒子在磁场中运动的时间t和离开磁场的位置。(3)要使所有带电粒子通过O点后的运动过程中不再从AB两点间越过,求出磁场的变化周期T0应满足的条件。
如图所示,平行金属导轨PQ、MN相距d=2m,导轨平面与水平面夹角a= 30°,导轨上端接一个R=6的电阻,导轨电阻不计,磁感应强度B=0.5T的匀强磁场垂直导轨平面向上。一根质量为m=0.2kg、电阻r=4的金属棒ef垂直导轨PQ、MN静止放置,距离导轨底端xl=3.2m。另一根绝缘塑料棒gh与金属棒ef平行放置,绝缘塑料棒gh从导轨底端以初速度v0=l0m/s沿导轨上滑并与金属棒正碰(碰撞时间极短),磁后绝缘塑料棒gh沿导轨下滑,金属棒ef沿导轨上滑x2=0.5m后停下,在此过程中电阻R上产生的电热为Q=0.36J。已知两棒与导轨间的动摩擦因数均为。求(1)绝缘塑料棒gh与金属棒ef碰撞前瞬间,绝缘塑料棒的速率;(2)碰撞后金属棒ef向上运动过程中的最大加速度;(3)金属棒ef向上运动过程中通过电阻R的电荷量。
(1 6分)在某项娱乐活动中,要求质量为m的物体轻放到水平传送带上,当物体离开水平传送带后恰好落到斜面的顶端,且此时速度沿斜面向下。斜面长度为l=2.75m,倾角为=37°,斜面动摩擦因数1=0.5。传送带距地面高度为h=2.1m,传送带的长度为L= 3m,传送带表面的动摩擦因数2=0.4,传送带一直以速度v传= 4m/s逆时针运动,g=10m/s2,sin37°=0.6,cos37°=0.8。求:(1)物体落到斜面顶端时的速度;(2)物体从斜面的顶端运动到底端的时间;(3)物体轻放在水平传送带的初位置到传送带左端的距离应该满足的条件。