人教B版选修2-1 第二章 圆锥曲线与方程练习卷
抛物线E:x2=2py(p>0)的焦点是离心率为的双曲线:32y2﹣mx2=1的一个焦点,正方形ABCD的两个顶点A、B在拋物线E上,C,D两点在直线y=x﹣4上,则该正方形的面积是( )
A.18或25 B.9或25 C.18或50 D.9或50
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A.[﹣,] | B.[﹣2,2] | C.[﹣1,1] | D.[﹣4,4] |
已知椭圆C1:+=1(0<a<,0<b<2)与椭圆C2:+=1有相同的焦点.直线L:y=k(x+1)与两个椭圆的四个交点,自上而下顺次记为A、B、C、D.
(Ⅰ)求线段BC的长(用k和a表示);
(Ⅱ)是否存在这样的直线L,使线段AB、BC、CD的长按此顺序构成一个等差数列.请说明详细的理由.
已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.
(Ⅰ)求椭圆方程;
(Ⅱ)若C,D分别是椭圆长轴的左右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.求证:为定值.