[贵州]2012年初中毕业升学考试(贵州卷)数学
某中学足球队的18名队员的年龄情况如下表:
则这些队员年龄的众数和中位数分别是( )
A.15,15 | B.15,15.5 | C.15,16 | D.16,15 |
铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )
A. | B. |
C. | D. |
小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )
A.270πcm2 | B.540πcm2 | C.135πcm2 | D.216πcm2 |
如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
A.6 | B.7 | C.8 | D.9 |
如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( )
A.∠E=2∠K | B.BC=2HI | C.六边形ABCDEF的周长=六边形GHIJKL的周长 | D.S六边形ABCDEF=2S六边形GHIJKL |
从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一,299.7万平方公里用科学记数法表示为( )平方公里(保留两位有效数字)
A. | B. | C. | D. |
如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是( )
A.54 | B.110 | C.19 | D.109 |
一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,现从中任意摸出一个球,恰好是黑球的概率为 .
以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是 .
某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.
某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
(1)在频数分布表中,a的值为 ,b的值为 ,并将频数分布直方图补充完整;
(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?
(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是 ;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
考点:
解答:
如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:
(1)ctan30°= ;
(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.
如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长.
为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?