北师大版选修1-2 1.2独立性检验练习卷
以下四个命题中:
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2;
④对分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
其中真命题的个数为( )
A.1 | B.2 | C.3 | D.4 |
为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表.
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
则至少有( )的把握认为喜爱打篮球与性别有关.
A.95% B.99% C.99.5% D.99.9%
随机调查某校110名学生是否喜欢跳舞,由列联表和公式K2=计算出K2,并由此作出结论:“有99%的可能性认为学生喜欢跳舞与性别有关”,则K2可以为( )
附表:
P(K2≥k0) |
0.10 |
0.05 |
0.025 |
0.010 |
k0 |
2.706 |
3.841 |
5.024 |
6.635 |
A.3.565 B.4.204 C.5.233 D.6.842
先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为x、y,设事件A为“x+y为偶数”,事件B为“x、y中有偶数,且x≠y”,则概率P(B|A)=( )
A. B. C. D.
袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是( )
A. | B. | C. | D. |
从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=( )
A. B. C. D.
先后掷子(子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x,y中有偶数且x≠y”,则概率P(B|A)=( )
A. B. C. D.
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系;
其中错误的个数是( )
A.0 | B.1 | C.2 | D.3 |
为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
|
理科 |
文科 |
合计 |
男 |
13 |
10 |
23 |
女 |
7 |
20 |
27 |
合计 |
20 |
30 |
50 |
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=≈4.844.则可以有 %的把握认为选修文科与性别有关系.
甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是 .
抛掷一枚质地均匀的骰子,所得点数的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},事件B={1,2,4,5,6},则P(A|B)的值为 .
如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)= ;
(2)P(B|A)= .
一个口袋中装有大小相同1个红球和3个黑球,现在有3个人,每人依次去摸出一个球,然后放回,若某两人摸出的球均为红色,则称这两人是“好朋友“,记A=“有两人好朋友”,B=“三人都是好朋友”,则P(B|A )= .