空间存在一方向竖直向下的匀强电场,O、P是电场中的两点。从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B。A不带电,B的电荷量为 q ( q > 0 ) 。A从O点发射时的速度大小为 v 0 , 到达P点所用时间为 t ;B从O点到达P点所用时间为 t 2 。重力加速度为 g ,求
(1)电场强度的大小;
(2)B运动到P点时的动能。
汽车以1.6m/s的速度在水平地面上匀速行驶,汽车后壁货架上放有一小球(可视作质点),架高1.8 m。由于前方事故,突然急刹车,汽车轮胎抱死,小球从架上落下。已知该型号汽车在所在路面行驶时刹车痕s (即刹车距离)与刹车前车速v的关系如下图线所示,忽略货物与架子间的摩擦及空气阻力,g取10m/s2。求:(1)汽车刹车过程中的加速度多大;(2)货物在车厢底板上落点距车后壁的距离.
某同学表演魔术时,将一小型条形磁铁藏在自己的袖子里,然后对着一悬挂的金属小球指手画脚,结果小球在他神奇的功力下飘动起来.假设当隐藏的小磁铁位于小球的左上方某一位置C (图中θ=37°)时,金属小球偏离竖直方向的夹角也是37°,如图所示.已知小球的质量为m=4.8Kg,该同学(含磁铁)的质量为M=50Kg,(sin370="0.6" cos370=0.8 g=10m/s2)求此时:(1)悬挂小球的细线的拉力大小为多少?(2)该同学受到地面的支持力和摩擦力大小各为多少?
如图所示,在xOy坐标系中,第一象限存在一与xOy平面平行的匀强电场,在第二象限存在垂直于纸面的匀强磁场。在y轴上的P点有一静止的带正电的粒子,某时刻,粒子在很短时间内(可忽略不计)分裂成三个带正电的粒子1、2和3,它们所带的电荷量分别为q1、q2和q3,质量分别为m1、m2和m3,且,。带电粒子1和2沿x轴负方向进人磁场区域,带电粒子3沿x轴正方向进入电场区域。经过一段时间三个带电粒子同时射出场区,其中粒子1、3射出场区的方向垂直于x轴,粒子2射出场区的方向与x轴负方向的夹角为60°。忽略重力和粒子间的相互作用。求:(1)三个粒子的质量之比;(2)三个粒子进入场区时的速度大小之比;(3)三个粒子射出场区时在x轴上的位移大小之比。
图甲为竖直放置的离心轨道,其中圆轨道的半径r=0.10m,在轨道的最低点A和最高点B各安装了一个压力传感器(图中未画出),小球(可视为质点)从斜轨道的不同高度由静止释放,可测出小球在轨道内侧通过这两点时对轨道的压力FA和FB。g取10m/s2。(1)若不计小球所受阻力,且小球恰能过B点,求小球通过A点时速度vA的大小;(2)若不计小球所受阻力,小球每次都能通过B点,FB随FA变化的图线如图乙中的a所示,求小球的质量m;(3)若小球所受阻力不可忽略,FB随FA变化的图线如图乙中的b所示,求当FB=6.0N时,小球从A运动到B的过程中损失的机械能。
如图所示,遥控赛车比赛中一个规定项目是“飞跃壕沟”,比赛要求:赛车从起点出发,沿水平直轨道运动,在B点飞出后越过“壕沟”,落在平台EF段。已知赛车的额定功率P=10.0W,赛车的质量m=1.0kg,在水平直轨道上受到的阻力f=2.0N,AB段长L=10.0m,BE的高度差h=1.25m,BE的水平距离x=1.5m。若赛车车长不计,空气阻力不计,g取10m/s2。(1)若赛车在水平直轨道上能达到最大速度,求最大速度vm的大小;(2)要越过壕沟,求赛车在B点最小速度v的大小;(3)若在比赛中赛车通过A点时速度vA=1m/s,且赛车达到额定功率。要使赛车完成比赛,求赛车在AB段通电的最短时间t。