带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:(1)带电粒子离开磁场时的偏转角θ多大?(2)带电粒子在磁场中运动多长时间?
如图所示,斜面和水平面由一小段光滑圆弧连接,斜面的倾角θ=370,一质量m=0.5kg的物块从距斜面底端B点5m处的A点由静止释放,最后停在水平面上的C点。已知物块与水平面和斜面的动摩擦因数均为0.3。(sin37°=0.6,cos37°=0.8,g=10m/s2)⑴求物块在水平面上滑行的时间及距离。⑵现用与水平方向成370的恒力F斜向右上拉该物块,使物块由静止开始沿水平直线CB运动到B点时立即撤去拉力。为了让物块还能回到A点,求恒力F的范围。
现在传送带传送货物已被广泛地应用,如图所示为一水平传送带装置示意图。紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的物体被无初速度地放在A处,传送带对物体的滑动摩擦力使物体开始做匀加速直线运动,随后物体又以与传送带相等的速率做匀速直线运动。设物体与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2。求⑴物体在传送带上运动的时间; ⑵如果提高传送带的运行速率,物体就能被较快地传送到B处,求传送带对应的最小运行速率。
2012年10月,奥地利极限运动员菲利克斯·鲍姆加特纳乘气球缓慢上升至3436m的高空后跳下,经过几秒到达距地面3256m高度处,立即打开降落伞开始匀速下降50s,快到达地面前改变降落伞角度而减速,成功落地时速度为4m/s。重力加速度的大小g取10 m/s2,打开降落伞后才考虑空气阻力。⑴求该运动员从静止开始下落至3256m高度处所需的时间及其在此处速度的大小;⑵若该运动员和降落伞的总质量m=60 kg,试求运动员和降落伞在减速下降时受空气阻力大小。
如图所示,在平面坐标系xOy内,第二三象限内存在沿y轴正方向的匀强电场,第一四象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外,一带正电的粒子从第三象限中的Q(-2L,-L)点以速度沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:(1)电场强度与磁感应强度大小之比。(2)粒子在磁场与电场中运动时间之比。
如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)力F的功率P是多少?