如图所示,光滑导轨与水平面成θ角,导轨宽L。匀强磁场磁感应强度为B。金属杆长也为L,质量为m,水平放在导轨上。当回路总电流为I1时,金属杆正好能静止。求:(1)当B的方向垂直于导轨平面向上时B的大小;(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。
汽车质量为5 t,其发动机额定功率为37.5 kW,汽车在水平道路上从静止开始起动,开始一段时间内,以加速度1.0 m/s2做匀加速运动,最后匀速运动的速度为15 m/s.求:(1)汽车做匀加速运动的时间.(2)汽车匀速运动后关闭发动机,还能滑多远?
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。
如图,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过2.0 s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角=37°,运动员的质量m=50 kg。不计空气阻力。(取sin37°=0.60,cos37°=0.80;g取10 m/s2)求(1)A点与O点的距离L;(2)运动员离开O点时的速度大小; (3)运动员落到A点时的动能。
一质点从静止开始作直线运动,第一秒内以加速度作匀变速直线运动,第二秒内以加速度作匀变速直线运动,第三秒内又以加速度作匀变速直线运动,第四秒内又以加速度作匀变速直线运动,如此周期性的反复下去。⑴在如图所示的坐标上作出前内的速度图线。(要求写出必要的计算过程,标出坐标轴的物理量和单位,坐标分度数值。)⑵求质点在末的瞬时速度。⑶求质点运动时间内的位移。