如图所示,AB为水平轨道,A、B间距离s=2m,BC是半径为R=0.40m的竖直半圆形光滑轨道,B为两轨道的连接点,C为轨道的最高点。一小物块以v0=6m/s的初速度从A点出发,经过B点滑上半圆形光滑轨道,恰能经过轨道的最高点,之后落回到水平轨道AB上的D点处。g取10m/s2,求:(1)落点D到B点间的距离;(2)小物块经过B点时的速度大小;(3)小物块与水平轨道AB间的动摩擦因数。
(14分) 如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。 (1)由b向a方向看到的装置如图2所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小; (3)求在下滑过程中,ab杆可以达到的速度最大值。
如图所示,在竖直平面内有一边界半径为R的圆形匀强磁场区域,磁感应强度为B,方向垂直纸面向里.一质量为m、电量为q的负点电荷从圆边缘的P点沿直径方向进入匀强磁场中,射出磁场时速度方向偏转了60°.不计点电荷的重力. (1)求点电荷速度υ的大小? (2)如果点电荷速度大小不变,以不同方向从P点进入圆形匀强磁场区域,点电荷在磁场中运动时间不同,求点电荷在磁场中运动的最长时间?
如下图所示,一个电子以4×106m/s的速度沿与电场垂直的方向从A点飞进匀强电场,并且从另一端B点沿与场强方向成150°角方向飞出,那么,A、B两点间的电势差为多少伏?(电子的质量为9.1×10-31kg)
在如图所示的电路中,电源的电动势E=3.0V,内阻r=1.0Ω;电阻R1=10Ω,R2=10Ω,R3=30Ω;R4=35Ω;电容器的电容C=100μF,电容器原来不带电,求接通开关S后流过R4的总电量。
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动。当电子第一次穿越x轴时,恰好到达C点;当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点,D点未在图中标出。已知A、C点到坐标原点的距离分别为d、2d。不计电子的重力。求 (1)电场强度E的大小; (2)磁感应强度B的大小; (3)电子从A运动到D经历的时间t.