如图所示,一导热性能良好、内壁光滑的气缸竖直放置,在距气缸底部l=36cm处有一与气缸固定连接的卡环,活塞与气缸底部之间封闭了一定质量的气体.当气体的温度T0=300K、大气压强时,活塞与气缸底部之间的距离 l0=30cm,不计活塞的质量和厚度.现对气缸加热,使活塞缓慢上升,求:①活塞刚到卡环处时封闭气体的温度T1;②封闭气体温度升高到T2=540K时的压强p2。
如图甲所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均可忽略不计,整个装置处于磁感应强度为B=0.50T的匀强磁场中,磁感应强度方向垂直轨道向下。现用某外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图乙所示。求: (1)杆的质量; (2)杆加速度的大小。
如图所示,有一质子(质量为m,电荷量为e)由静止开始经电压为U1的电场加速后,进入两块板间距离为d,板间电压为U2的平行金属板间,若质子从两板正中间垂直电场方向射入偏转电场,并且恰能从下板右边缘穿出电场。 求:(1)质子刚进入偏转电场U2时的速度; (2)质子在偏转电场U2中运动的时间和金属板的长度; (3)质子穿出偏转电场时的动能。
如图所示,一个质量为m、电荷量为q,不计重力的带电粒子,从x轴上的P(a,0)点,以速度v沿与x轴正方向成60°角射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。 (1)判断粒子的电性; (2)求:匀强磁场的磁感应强度B的大小和粒子通过第一象限的时间。
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.4m在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C现有一电荷量q=+1.0×10-4C,质量m=0.1kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求: (1)带电体运动到圆形轨道B点时对圆形轨道的压力大小; (2)D点到B点的距离xDB; (3)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,AB是一段位于竖直平面内的光滑轨道,高度为h,末端B处的切线方向水平.一个质量为m的小物体P从轨道顶端A处由静止释放,滑到B端后飞出,落到地面上的C点,轨迹如图中虚线BC所示.已知它落地时相对于B点的水平位移OC=l.现在轨道下方紧贴B点安装一水平传送带,传送带的右端与B的距离为.当传送带静止时,让P再次从A点由静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面的C点.(不计空气阻力) (1)求P滑至B点时的速度大小; (2)求P与传送带之间的动摩擦因数μ; (3)当传送带运动时(其他条件不变),P的落地点为仍为C点,求传送带运动方向及速度v的取值范围.