物体A的质量为mA,圆环B的质量为mB,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,如图所示,长度l=4 m,现从静止释放圆环.不计定滑轮和空气的阻力,取g=10 m/s2,求:(1)若,则圆环能下降的最大距离hm;(2)若圆环下降h2=3 m时的速度大小为4 m/s,则两个物体的质量应满足怎样的关系?(3)若,请定性说明小环下降过程中速度大小变化的情况及其理由。
如图所示,物体A放在足够长的木板B上,木板B静止于水平面。t = 0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度aB = 1.0m/s2的匀加速直线运动。已知A的质量mA和B的质量mg均为2.0kg,A、B之间的动摩擦因数μ1 = 0.05,B与水平面之间的动摩擦因数μ2 = 0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。求物体A刚运动时的加速度aAt = 1.0s时,电动机的输出功率P;若t = 1.0s时,将电动机的输出功率立即调整为P′ = 5W,并在以后的运动过程中始终保持这一功率不变,t = 3.8s时物体A的速度为1.2m/s。则在t = 1.0s到t = 3.8s这段时间内木板B的位移为多少?
如图,一质量m = 1 kg的木块静止的光滑水平地面上。开始时,木块右端与墙相距L = 0.08 m;质量为m = 1 kg的小物块以初速度υ0= 2 m/s滑上木板左端。木板长度可保证物块在运动过程中不与墙接触。物块与木板之间的动摩擦因数为μ= 0.1,木板与墙的碰撞是完全弹性的。取g = 10 m/s2,求从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间;达到共同速度时木板右端与墙之间的距离。
甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。
如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m,两板间距离d = 0.4cm,有一束相同的带电微粒以相同的初速度先后从两板中央平行极板射入,由于重力作用微粒能落到下板上,微粒所带电荷立即转移到下极板且均匀分布在下极板上。设前一微粒落到下极板上时后一微粒才能开始射入两极板间。已知微粒质量为 m = 2×10-6kg,电量q = 1×10-8 C,电容器电容为C =10-6 F,取g=10m/s2。求:为使第一个微粒的落点范围能在下板中点到紧靠边缘的B点之内,求微粒入射的初速度的取值范围;若带电微粒以第一问中初速度的最小值入射,则最多能有多少个带电微粒落到下极板上。
如图所示,绝缘小球A静止在高为h="0.8" m的光滑平台上,带电量为qB =+0.3C的小球B用长为L=1m的细线悬挂在平台上方,两球质量mA=mB=0.5kg,整个装置放在竖直向下的匀强电场中,场强大小E =10N/C,现将细线拉开角度α =60o后,由静止释放B球,在最低点与A球发生对心碰撞,碰撞时无机械能损失。不计空气阻力,取g=10m/s2,求:B球在碰撞前的速度;A球离开平台的水平位移大小。