如图所示,质量为m、横截面为直角三角形的物块ABC,∠ABC=,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,求摩擦力的大小。
如图所示,s为一电子发射枪,可以连续发射电子束,发射出来的电子初速度可视为0,电子经过平行板A、B之间的加速电场加速后,从O点沿x轴正方向进入xoy平面内,在第一象限内沿x、y轴各放一块平面荧光屏,两屏的交点为O,已知在y>0、0<x<a的范围内有垂直纸面向外的匀强磁场,在y>0、x>a的区域有垂直纸面向里的匀强磁场,大小均为B。已知给平行板AB提供直流电压的电源E可以给平行板AB提供0~U之间的各类数值的电压,现调节电源E的输出电压,从0调到最大值的过程中发现当AB间的电压为时,x轴上开始出现荧光。(不计电子的重力)试求:(1)当电源输出电压调至和U时,进入磁场的电子运动半径之比r1:r2(2)两荧光屏上的发光亮线的范围。
一质量m=0.5kg的滑块以一定的初速度冲上一倾角为30º足够长的斜面,某同学利用DIS实验系统测出了滑块冲上斜面过程中多个时刻的瞬时速度,如图为通过计算机绘制出的滑块上滑过程中的v-t图。最大静摩擦力可视为等于滑动摩擦力,g取10m/s2,求: (1)滑块冲上斜面过程中的加速度大小; (2)滑块与斜面间的动摩擦因数; (3)判断滑块最后能否返回斜面底端?若能返回,求出返回斜面底端时的动能;若不能返回,求出滑块停在什么位置。
如图所示,在直角坐标系xoy平面的第Ⅱ象限内有半径为r的圆o1分别与x轴、y轴相切于C(-r,0)、D(0,r) 两点,圆o1内存在垂直于xoy平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的A粒子(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求:(1)A粒子在磁场区域的偏转半径及OG之间的距离;(2)该匀强电场的电场强度E;(3)若另有一个与A的质量和电荷量均相同、速率也相同的粒子A′,从C点沿与x轴负方向成30°角的方向射入磁场,则粒子A′再次回到x轴上某点时,该点的坐标值为多少?
如图所示,质量M=1.5kg的小车静止于光滑水平面上并紧靠固定在水平面上的桌子右边,其上表面与水平桌面相平,小车的左端放有一质量为0.5kg的滑块Q.水平放置的轻弹簧左端固定,质量为0.5kg的小物块P置于光滑桌面上的A点并与弹簧的右端接触,此时弹簧处于原长.现用水平向左的推力F将P缓慢推至B点(弹簧仍在弹性限度内),推力做功WF=4J,撤去F后,P沿桌面滑到小车左端并与Q发生弹性碰撞,最后Q恰好没从小车上滑下.已知Q与小车表面间动摩擦因数μ=0.1.(g=10m/s2)求:(1)P刚要与Q碰撞前的速度是多少?(2)Q刚在小车上滑行时的初速度v0是多少?(3)为保证Q不从小车上滑下,小车 的长度至少为多少?
下图是放置在竖直平面内游戏滑轨的模拟装置的示意图。滑轨由四部分粗细均匀的金属杆组成,其中水平直轨AB与倾斜直轨CD的长度均为L=3m,圆弧形轨道AQC和BPD均光滑,AQC的半径为r=1m,AB、CD与两圆弧形轨道相切,O2D、O1C与竖直方向的夹角均为q=37°。现有一质量为m=1kg的滑块(可视为质点)穿在滑轨上,以v0=5m/s的初速度从B点开始水平向左运动,滑块与两段直轨道间的动摩擦因数均为μ=0.2,滑块经过轨道连接处的机械能损失忽略不计。取g=10m/s2,sin37°=0.6,求:(1)滑块第一次回到B点时的速度大小;(2)滑块第二次到达C点时的动能;(3)滑块在CD段上运动的总路程。