平衡位置位于原点O的波源发出的简谐横波在均匀介质中沿水平x轴传播,P、Q为x轴上的两个点(均位于x轴正向),P与O的距离为35cm,此距离介于一倍波长与二倍波长之间.已知波源自t=0时由平衡位置开始向上振动,周期T=1s,振幅A=5cm.当波传到P点时,波源恰好处于波峰位置;此后再经过5s,平衡位置在Q处的质点第一次处于波峰位置.求:(i)P、Q间的距离;(ii)从t=0开始到平衡位置在Q处的质点第一次处于波峰位置时,波源在振动过程中通过的路程.
一质量为m=6kg带电量为q= -0.1C的小球P自动摩擦因数μ=0.5倾角θ=53°的粗糙斜面顶端由静止开始滑下,斜面高h=6.0m,,斜面底端通过一段光滑小圆弧与一光滑水平面相连。整个装置处在水平向右的匀强电场中,场强E=200N/C,忽略小球在连接处的能量损失,当小球运动到水平面时,立即撤去电场。水平面上放一静止的不带电的质量也为m的1/4圆槽Q,圆槽光滑且可沿水平面自由滑动,圆槽的半径R=3m,如图所示。(sin53°="0.8" ,cos53°="0.6" ,g=10m/s2。)(1)在沿斜面下滑的整个过程中,P球电势能增加多少?(2)小球P运动到水平面时的速度大小。(3)试判断小球P能否冲出圆槽Q。
有一个小圆环瓷片最高能从h=0.18m高处静止释放后直接撞击地面而不被摔坏.现让该小圆环瓷片恰好套在一圆柱体上端且可沿圆柱体下滑,瓷片与圆柱体之间的摩擦力是瓷片重力的4.5倍,如图所示.若将该装置从距地面H=4.5m高处从静止开始下落,瓷片落地恰好没摔坏.已知圆柱体与瓷片所受的空气阻力都为自身重力的0.1倍,圆柱体碰地后速度立即变为零且保持竖直方向.(g=10m/s2)(1)瓷片直接撞击地面而不被摔坏时,瓷片着地时的最大速度为多少?(2)瓷片随圆柱体从静止到落地,下落总时间为多少?
有一等腰直角ABC三角形区域,直角边长为。在该区域,有一垂直纸面向内磁感应强度为的匀强磁场。一束质量为、电荷量为,带负电粒子以不同速度从中点垂直直角边射入该磁场区域,在另一直角边放置一块荧光屏,如图所示。重力不计,求(1)当粒子以入射时,求粒子在荧光屏上光斑的位置及在磁场中运动的时间。(2)荧光屏AB区域上光斑的分布区域。(3)若把磁场更换成沿AC方向的场强为E的匀强电场,当粒子以入射时,求粒子在荧光屏上光斑的位置(4)把磁场更换成沿AC方向的场强为E的匀强电场,荧光屏AB区域上光斑的分布区域。
轻质细线吊着一质量为m=3kg,边长为L=1m、匝数n=10的正方形线圈总电阻为r=1Ω.在框的中间位置以下区域分布着矩形匀强磁场,如图甲所示.磁场方向垂直纸面向里,大小随时间变化如图乙所示.求:(1)请判断全过程线圈中产生的感应电流的方向?(2)线圈的电功率;(3)请通过定量计算说明绳子张力的变化情况,并判别是否存在轻质细线的拉力为0的时刻,并说明理由。
如图所示,在直角坐标系xOy第二、三象限存在有界匀强磁场Ⅰ(垂直纸面向里)和有界匀强磁场Ⅱ(垂直纸面向外),O、M、N、Q为磁场边界和x轴交点,OM=MN=L,在第二、三象限加上竖直向下的匀强电场。一质量为m,电荷量为q的带负电的小球从第一象限的P点(2L,L)以某一初速度沿-x轴方向射出,恰好从坐标原点O进入有界磁场Ⅰ,又从M点射出有界磁场Ⅰ,在有界磁场中做匀速圆周运动。(已知重力加速度为g)(1)求所加匀强电场场强E的大小;(2)求带电小球过原点O的速度大小和有界磁场Ⅰ的磁感应强度B的大小;(3)如带电小球能再次回到原点O,则有界磁场Ⅱ的宽度应该满足的条件。