如图所示,高h=0.80m的光滑弧形轨道与水平光滑轨道相切且平滑连接。将一个质量m="0.40" kg的物块(可视为质点)从弧形轨道顶端由静止释放,物块滑至水平轨道后,从水平轨道右侧边缘O点水平飞出,落到水平地面的P点,P点距O点的水平距离x=1.6m。不计一切摩擦和空气阻力,取重力加速度g=10m/s2。求:(1)物块从水平轨道O点飞出时的速率;(2)水平轨道距地面的高度;(3)物块落到P点时的速度。
如图所示,截面为直角三角形的木块置于粗糙的水平地面上,其倾角θ=37°。现有一质量m=1.0 kg的滑块沿斜面由静止下滑,经时间0.40 s沿斜面运动了0.28 m,且该过程中木块处于静止状态。重力加速度g取10 m/s2,求:(sin37°=0.6,cos37°=0.8)(1)滑块滑行过程中受到的摩擦力大小;(2)滑块在斜面上滑行的过程中木块受到地面的摩擦力大小及方向。
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。
如图所示,光滑水平台面MN上放两个相同小物块A、B,右端N处与水平传送带理想连接,传送带水平部分长度L=8m,沿逆时针方向以恒定速度v0=2m/s匀速转动。物块A、B(大小不计,视作质点)与传送带间的动摩擦因数均为μ=0.2,物块A、B质量均为m=1kg。开始时A、B静止,A、B间压缩一轻质短弹簧。现解除锁定,弹簧弹开A、B,弹开后B滑上传送带,A掉落到地面上的Q点,已知水平台面高h=0.8m,Q点与水平台面间右端间的距离S=1.6m,g取10m/s2。(1)求物块A脱离弹簧时速度的大小;(2)求弹簧储存的弹性势能;(3)求物块B在水平传送带上运动的时间。
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?(2)粒子从边界MN射出来的位置之间最大的距离是多少?
如图所示,线圈的面积是0.05 m2,共100匝,线圈电阻为r =" 1" Ω,外接电阻R =" 9" Ω,匀强磁场的磁感应强度B =T,当线圈以300 r/min的转速匀速旋转时,求:(1)若从中性面开始计时,写出线圈磁通量变化率的瞬时表达式.(2)电路中电压表和电流表的示数各是多少?(3)由图示位置转过60°角的过程产生的平均感应电动势为多少?