如图所示,半径均为R,质量均为M,内表面光滑的两个完全相同的1/4圆槽A、B并排放在光滑的水平面上,图中a、c分别为A、B槽的最高点,b、b/分别为A、B槽的最低点,A槽的左端紧靠着墙壁,一个质量为m的小球C从圆槽的顶端的a点无初速释放,求:(1)小球C从a点运动到b点时的速度及A槽对地面的压力;(2)小球C在B槽内运动所能到达最大高度;(3)B的最大速度是多少?
滑雪者从A点由静止沿斜面滑下,滑过一平台后水平飞离B点,斜面AP与平台PB通过一小段圆弧连接,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示(图中所标的长度都是已知量),已知斜面、平台与滑雪板之间的动摩擦因数都为μ,重力加速度为g.假设滑雪者由斜面底端进入平台后立即沿水平方向运动,求: (1)滑雪者离开B点时的速度大小; (2)滑雪者从B点开始做平抛运动的水平距离x.
如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF是半径为r=0.4m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合。现有一质量m=0.1kg,可视为质点的小球从轨道ABC上的A点由静止释放,若小球经C处后恰能沿轨道DEF做圆周运动,(取g=10m/s2),求: (1)小球释放点A距C点的竖直高度H; (2)小球到达F点时对轨道的压力是多大?
已知“嫦娥一号”卫星环月工作轨道为圆轨道,轨道距月球表面高度为h,运行周期为T.若还知道月球平均半径R,利用以上条件求: (1)月球表面的重力加速度g月的大小; (2)“嫦娥一号”卫星绕月球运行的速度v的大小。
在水平面上有一质量为1kg的物体,在2N的水平拉力作用下正以4m/s的速度匀速直线运动,某一时刻撤去拉力,求撤去拉力后经3s物体运动的位移为多大?
如右图所示,半径为R的圆板匀速转动,B为圆板边缘上的一点,当半径OB转动到某一方向时,在圆板中心正上方高h处以平行于OB方向水平抛出一小球,要使小球刚好能落在圆板上的B点(此后球不反弹),求: (1)小球的初速度的大小; (2)圆板转动的角速度.