如图所示,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为SA:SB = 1:2.两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B中气体的体积皆为V0,温度皆为T0=300K.A中气体压强pA=1.5p0,p0是气缸外的大气压强.现对A加热,使其中气体的压强升到,同时保持B中气体的温度不变.求此时A中气体温度TA .
离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图1所示,截面半径为R的圆柱腔分为两个工作区。I为电离区,将氙气电离获得1价正离子II为加速区,长度为L,两端加有电压,形成轴向的匀强电场。I区产生的正离子以接近0的初速度进入II区,被加速后以速度vM从右侧喷出。I区内有轴向的匀强磁场,磁感应强度大小为B,在离轴线R/2处的C点持续射出一定速度范围的电子。假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看)。电子的初速度方向与中心O点和C点的连线成α角(0<α<90o)。推进器工作时,向I区注入稀薄的氙气。电子使氙气电离的最小速度为v0,电子在I区内不与器壁相碰且能到达的区域越大,电离效果越好。已知离子质量为M;电子质量为m,电量为e。(电子碰到器壁即被吸收,不考虑电子间的碰撞)。 (1)求II区的加速电压及离子的加速度大小; (2)为90o时,要取得好的电离效果,求射出的电子速率v的范围; (3)要取得好的电离效果,求射出的电子最大速率vm与α的关系。
光滑水平面上,用轻质弹簧连接的质量为的A、B两物体都以的速度向右运动,此时弹簧处于原长状态。质量为的物体C静止在前方,如图所示,B与C碰撞后粘合在一起运动,求: ①B、C碰撞刚结束时的瞬时速度的大小; ②在以后的运动过程中,弹簧的最大弹性势能。
如图所示是一列沿x轴正向传播的简谐横波在t=0.25s时刻的波形图,已知波的传播速度v=4m/s。 ①画出x=2.0m处质点的振动图像(至少画出一个周期); ②求x=2.5m处质点在0~4.5s内通过的路程及t=4.5s时的位移; ③此时A点的纵坐标为2cm,试求从图示时刻开始经过多少时间A点第三次出现波峰?
如图所示,一个绝热的气缸(气缸足够高)竖直放置,内有一个绝热且光滑的活塞,中间有一个固定的导热性良好的隔板,隔板将气缸分成两部分,分别密封着两部分理想气体A和B。活塞的质量m=8kg,横截面积,与隔板相距h=25cm,现通过电热丝缓慢加热气体,当A气体吸收热量Q=200J时,活塞上升了,此时气体的温度为℃,已知大气压强,重力加速度。 ①加热过程中,若A气体的内能增加了,求B气体的内能增加量; ②现在停止对气体加热,同时在活塞上缓慢添加沙粒,当活塞恰好回到原来的位置时,A气体的温度为℃,求此添加砂粒的总质量M。
如图所示,水平地面上有一竖直绝缘弹性薄挡板,板高h=5m,与板等高处有一水平放置的小篮筐,筐口的中心距挡板s=1m。整个空间存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度B=0.2T,而匀强电场未在图中画出。质量、电荷量的带电小球(可视为质点),自挡板下端的左侧以不同的水平初速度开始向左运动,恰能做匀速圆周运动,若小球与挡板相碰后以原速率弹回,且碰撞时间不计,碰撞前后电量不变,小球最后都能从筐口的中心处落入筐中()。试求: (1)电场强度的大小和方向; (2)小球运动的最大速率; (3)小球运动的最长时间。(结果可用反三角函数表示,例如,)