如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取10m/s2。判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。
算盘是我国古老的计算工具,中心带孔的相同算珠可在算盘的固定导杆上滑动,使用前算珠需要归零,如图所示,水平放置的算盘中有甲、乙两颗算珠未在归零位置,甲靠边框b,甲、乙相隔 s 1 = 3 . 5 × 10 - 2 m ,乙与边框a相隔 s 2 = 2 . 0 × 10 - 2 m ,算珠与导杆间的动摩擦因数 μ = 0 . 1 。现用手指将甲以 0 . 4 m/s 的初速度拨出,甲、乙碰撞后甲的速度大小为 0 . 1 m/s ,方向不变,碰撞时间极短且不计,重力加速度g取 10 m/s 2 。
(1)通过计算,判断乙算珠能否滑动到边框a;
(2)求甲算珠从拨出到停下所需的时间。
如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度 v 0 向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为 u 0 。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为 u 0 2 ,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
如图,一长木板在光滑的水平面上以速度 v 0 向右做匀速直线运动,将一小滑块无初速地轻放在木板最右端。已知滑块和木板的质量分别为m和2m,它们之间的动摩擦因数为μ,重力加速度为g。
(1)滑块相对木板静止时,求它们的共同速度大小;
(2)某时刻木板速度是滑块的2倍,求此时滑块到木板最右端的距离;
(3)若滑块轻放在木板最右端的同时,给木板施加一水平向右的外力,使得木板保持匀速直线运动,直到滑块相对木板静止,求此过程中滑块的运动时间以及外力所做的功。
一列沿x轴正方向传播的简谐横波,其波源的平衡位置在坐标原点,波源在 0 ~ 4 s 内的振动图像如图(a)所示,已知波的传播速度为 0 . 5 m / s 。
(1)求这列横波的波长;
(2)求波源在4s内通过的路程;
(3)在图(b)中画出 t = 4 s 时刻的波形图。
如图,两水平面(虚线)之间的距离为 H ,其间的区域存在方向水平向右的匀强电场。自该区域上方的A点将质量为 m 、电荷量分别为 q 和 – q ( q > 0 ) 的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为 N 刚离开电场时动能的1.5倍。不计空气阻力,重力加速度大小为 g。求
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小。