用两根长度均为L的绝缘细线各系一个小球,并悬挂于同一点。已知两小球质量均为m,当它们带上等量同种电荷时,两细线与竖直方向的夹角均为,如图所示。若已知静电力常量为k,重力加速度为g。求:(1)画出左边小球的受力分析图;(2)小球受绝缘细线拉力的大小;(3)小球所带的电荷量。
如图所示,真空中水平放置的两个相同极板Y和Y'长为L,相距d,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压U,一束质量为m、带电量为+q的粒子(不计重力)从两板左侧中点A以初速度v0沿水平方向射入电场且能穿出. (1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O点;(2)求两板间所加偏转电压U的范围;(3)求粒子可能到达屏上区域的长度.
如图甲所示,电荷量为q=1×10-4C的带正电的小物块置于绝缘水平面上,所在空间存在方向沿水平向右的电场,电场强度E的大小与时间的关系如图乙所示,物块运动速度与时间t的关系如图丙所示,取重力加速度g=10m/s2。求(1)前2秒内物体加速度的大小;(2)前4秒内物体的位移 ;(3)前4秒内电场力做的功。
如图所示,R为电阻箱,V为理想电压表.当电阻箱读数为R1=2 Ω时,电压表读数为U1=4 V;当电阻箱读数为R2=5 Ω时,电压表读数为U2=5 V.求: (1)电源的电动势E和内阻r;(2)当电阻箱R读数为多少时,电源的输出功率最大?最大值Pm为多少?
如图,光滑固定斜面倾角为α,斜面底端固定有垂直斜面的挡板C,斜面顶端固定有光滑定滑轮.质量为m的物体A经一轻质弹簧与下方挡板上的质量也为m的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳平行于斜面.现在挂钩上挂一质量为M的物体D并从静止状态释放,已知它恰好能使B离开挡板但不继续上升.若让D带上正电荷q,同时在D运动的空间中加上方向竖直向下的匀强电场,电场强度的大小为E,仍从上述初始位置由静止状态释放D,求:这次B刚离开挡板时D的速度大小是多少?(已知重力加速度为g.)
在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m的带电小球,另一端固定于O点。把小球拉起直至细线与场强平行,然后无初速释放。已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ(如图)。求小球经过最低点时细线对小球的拉力。