如图所示,空间某平面内有一条折线是磁场的分界线,在折线的两侧分布着方向相反、与平面垂直的匀强磁场,磁感应强度大小都为B。折线的顶角∠A=90°,P、Q是折线上的两点,AP=AQ=L。现有一质量为m、电荷量为q的带负电微粒从P点沿PQ方向射出,不计微粒的重力。(1)为使微粒从P点射出后,途经折线的顶点A而到达Q点,求初速度v应满足什么条件?(2)求第(1)问中微粒从P点到达Q点所用的时间。
如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末端O点。A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求(1)物块A在与挡板B碰撞前瞬间速度v的大小;(2)弹簧最大压缩量为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=3kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.5m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=0.3m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.2求:(1)水平轨道BC长度;(2)小车固定时物块到达圆弧轨道最低点B时对轨道的压力;(3)小车不固定时物块再次停在小车上时距小车B点的距离;(4)两种情况下由于摩擦系统产生的热量之比。
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:(1)小车上表面的长度L是多少?(2)小物块落地时距小车右端的水平距离是多少?
如图所示,固定在地面上的光滑圆弧轨道AB、EF,他们的圆心角均为90°,半径均为R。一质量为m ,上表面长也为R的小车静止在光滑水平面CD上,小车上表面与轨道AB、EF的末端B、E相切。一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动。当小车右端与壁DE刚接触时,物体m恰好滑动到小车右端且与小车共速。小车与DE相碰后立即停止运动但不粘连,物体则继续滑上圆弧轨道EF,以后又滑下来冲上小车。求:(1)物体从A点滑到B点时的速率;(2)物体与小车之间的滑动摩擦力;(3)水平面CD的长度;(4)当物体再从轨道EF滑下并滑上小车后,如果小车与壁BC相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端的距离。
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。(不计空气阻力)求:(1)滑块经过B点时速度的大小;(2)滑块冲到圆弧轨道最低点B时对轨道的压力;(3)滑块在圆弧轨道BC段克服摩擦力所做的功。