如图所示,一物体M从A点以某一初速度沿倾角α=37°的粗糙固定斜面向上运动,自顶端B点飞出后,垂直撞到高H=2.25m的竖直墙面上C点,又沿原轨迹返回.已知B、C两点的高度差h=0.45m,物体M与斜面间的动摩擦因数μ=0.25,取sin37°=0.6,cos37°=0.8,重力加速度g="10" m/s2.试求:(1)物体M沿斜面向上运动时的加速度大小;(2)物体返回后B点时的速度;(3)物体被墙面弹回后,从B点回到A点所需时间。
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B。圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点。已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:(1)质子刚进入电场时的速度方向和大小;(2)OC间的距离;(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
(12分)如图所示,在倾角为θ的绝缘斜面上,有相距为L的A、B两点,分别固定着两个带电量均为的正点电荷。O为AB连线的中点,a、b是AB连线上两点,其中Aa=Bb=。一质量为m、电荷量为+q的小滑块(可视为质点)以初动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为,第一次到达b点时的动能恰好为零,已知静电力常量为。求:(1)两个带电量均为的正点电荷在a点处的合场强大小和方向;(2)小滑块由a点向b点运动的过程中受到的滑动摩擦力大小;(3)aO两点间的电势差。
如图所示,Ⅰ、Ⅱ、Ⅲ为电场和磁场的理想边界,一束电子(电量为e,质量为m,重力不计)由静止状态从P点经过Ⅰ、Ⅱ间的电场加速后垂直到达边界Ⅱ的Q点。匀强磁场的磁感应强度为B,磁场边界宽度为d,电子从磁场边界Ⅲ穿出时的速度方向与电子原来的入射方向夹角为30°。求:(1)电子在磁场中运动的时间t;(2)若改变PQ间的电势差,使电子刚好不能从边界Ⅲ射出,则此时PQ间的电势差U是多少?
如图所示,两根平行光滑金属导轨MP、NQ与水平面成θ=37°角固定放置,导轨电阻不计,两导轨间距L="0.5" m,在两导轨形成的斜面上放一个与导轨垂直的均匀金属棒ab,金属棒ab处于静止状态,它的质量为。金属棒ab两端连在导轨间部分对应的电阻为R2=2Ω,电源电动势E=2V,电源内阻r=1Ω,电阻R1=2Ω,其他电阻不计。装置所在区域存在一垂直于斜面MPQN的匀强磁场。(已知sin37°=0.6,cos37°=0.8,)求:(1)所加磁场磁感应强度方向; (2)磁感应强度B的大小。
如图所示,一质量为M、长为L的长方形木板B放在光滑水平地面上,在其右端放一质量为m的小木块A,m<M。现以地面为参照系给A、B以大小相等、方向相反的初速度V0,使A开始向左运动、B开始向右运动,最后A刚好没有滑离B板。求: (1)它们最后的速度大小和方向(2)A、B系统损失的机械能(3)小木块A向左运动到达的最远方(从地面上看)离出发点的距离。