如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不计电子重力)电子电荷量为-e。(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。(2)在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置。(3)若电子从(2)问求出位置中的某个位置出发,使电子出电场Ⅱ时动能最小,求释放的位置及电子出电场Ⅱ时最小动能为多少?
如图所示,空间有一垂直纸面的磁感应强度为0.5T的匀强磁场,一质量为0.2kg且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速放置一质量为0.1kg、电荷量q=+0.2C的滑块,滑块与绝缘木板之间动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力。t=0时对木板施加方向水平向左,大小为0.6N恒力,g取10m/s2。则()
为了研究过山车的原理,某兴趣小组提出了下列设想:取一个与水平方向夹角为37°、长为l = 2.0m的粗糙倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除 AB 段以外都是光滑的。其AB 与BC 轨道以微小圆弧相接,如图所示.一个小物块以初速度=4.0m/s从某一高处水平抛出,到A点时速度方向恰好沿 AB 方向,并沿倾斜轨道滑下.已知物块与倾斜轨道的动摩擦因数 μ = 0.50.(g=10 m/s2、sin37°= 0.60、cos37° =0.80) (1)求小物块到达A点时速度。 (2)要使小物块不离开轨道,并从轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件? (3)为了让小物块不离开轨道,并且能够滑回倾斜轨道 AB,则竖直圆轨道的半径应该满足什么条件?
如图所示,让质量m=5.0kg的摆球由图中所示位置A从静止开始下摆,摆至最低点B点时恰好绳被拉断。已知摆线长L=1.6m,悬点O与地面的距离OC=4.0m。若空气阻力不计,摆线被拉断瞬间小球的机械能无损失。(g取10 m/s2)求: (1)摆线所能承受的最大拉力T; (2)摆球落地时的动能。
如图所示,质量为m的物体放在水平桌面上,在与水平方向成θ角的恒力F作用下加速向右运功,已知物体与桌面间的动摩擦因数为μ,求: (1)物体所受的摩擦力; (2)物体的加速度.
一辆汽车以72km/h的速度行驶,现因故紧急刹车并最终停止运动.已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5s,汽车的位移是多大?