如图所示,质量为mb=14kg的木板B放在水平地面上,质量为ma=10kg的木箱A放在木板B上.一根轻绳一端拴在木箱上,另一端拴在地面的木桩上,绳绷紧时绳与水平面的夹角为=37°,已知木箱A与木板B之间的动摩擦因数=0.5,木板B与地面之间动摩擦因数=0.4.重力加速度g =10m/s2. 现用水平力F将木板B从木箱A下面匀速抽出.(sin370=0.6 cos370=0.8),求: (1) 绳上张力T的大小; (2) 拉力F的大小。
如下图所示,两平行金属板A、B长为L=8 cm,两板间距离d=8 cm,A板比B板电势高300 V,一带正电的粒子电荷量为q=1.0×10-10C,质量为m=1.0×10-20 kg,沿电场中心线RO垂直电场线飞入电场,初速度v0=2.0×106 m/s,粒子飞出电场后经过界面MN、PS间的无电场区域,然后进入固定在O点的点电荷Q形成的电场区域(设界面PS右侧点电荷的电场分布不受界面的影响).已知两界面MN、PS相距为12 cm,D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9 cm,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc上.(静电力常量k=9.0×109 N·m2/C2,粒子的重力不计)求: (1)粒子穿过界面MN时偏离中心线RO的距离多远?到达PS界面时离D点多远? (2)垂直打在放置于中心线上的荧光屏的位置离D点多远? (3)确定点电荷Q的电性并求其电荷量的大小.
如图所示电路中,电源的总功率是40W,R1=4Ω,R2=6Ω,a、b两点间的电压是4.8V,电源的输出功率是37.6W.求: (1)通过电源的电流; (2)电源电动势E; (3)电源的内电阻r.
如图所示,Q为固定的正点电荷,A、B两点在Q的正上方和 Q相距分别h和0.25h,将另一点电荷从 A点由静止释放,运动到B点时速度正好又变为零.若此电荷在A点处的加速度大小为,试求: (1)此电荷在B点处的加速度; (2)A、B两点间的电势差(用Q和h表示).
将电量q1=+1.0×10-8C的点电荷,在A点时所受电场力大小是2.0×10-5N。将它从零电势O点处移到电场中A点时,需克服电场力做功2.0×10-6J.求: (1)A点处的电场强度的大小; (2)电势差UAO; (3)若将q1换成q2=-2.0×10-8C的点电荷,求q2从O点移动到A点过程中q2所受电场力所做的功.
如图所示,绝缘的水平桌面上方有一竖直方向的矩形区域,该区域是由三个边长均为L的正方形区域ABFE、BCGF和CDHG首尾相接组成的,且矩形的下边EH与桌面相接。三个正方形区域中分别存在方向为竖直向下、竖直向上、竖直向上的匀强电场,其场强大小比例为1∶1∶2。现有一带正电的滑块以某一初速度从E点射入场区,初速度方向水平向右,滑块最终恰从D点射出场区。已知滑块在ABFE区域所受静电力和所受重力大小相等,桌面与滑块之间的动摩擦因数为0.125,重力加速度为g,滑块可以视作质点。求: (1)滑块进入CDHG区域时的速度大小v0; (2)滑块在ADHE区域运动的总时间。