如图所示,为一个从上向下看的俯视图,在光滑绝缘的水平桌面上,固定放置一条光滑绝缘的挡板轨道ABCD,AB段为直线,BCD段是半径为R的一部分圆弧(两部分相切于B点),挡板处于场强为E的匀强电场中,电场方向与圆的直径MN平行.现使一带电量为+q、质量为m的小球由静止从斜挡板内侧上某点释放,为使小球能沿挡板内侧运动,最后从D点抛出,试求:(1)小球从释放点到N点沿电场强度方向的最小距离s;(2)在上述条件下小球经过N点时对挡板的压力大小.
面积S = 0.2m2、n = 100匝的圆形线圈,处在如图所示的磁场内,磁感应强度随时间t变化的规律是B = 0.02t,R = 3Ω,C = 30μF,线圈电阻r = 1Ω,求: (1)通过R的电流大小和方向 (2)电容器的电荷量。
如图所示,ABCD为一个正方形,匀强电场与这个正方形所在平面平行,把一个电量为的负电荷从A点移到B点,电场力做功;把一个电量为的正电荷从B点移到C点,克服电场力做功,设A点电势为零,求: (1)B、C两点的电势; (2)把电量为q2的正电荷从C点移到D点电场力做的功。
如图a所示,与水平方向成37°角的直线MN下方有与MN垂直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过后,电荷以v0=1.5×l04m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)。求: (1)匀强电场的电场强度E; (2)图b中时刻电荷与第一次通过MN的位置相距多远;(3)如果电荷第一次通过MN的位置到N点的距离d=68cm,在N点上方且垂直MN放置足够大的挡板.求电荷从O点出发运动到挡板所需的时间。
如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L=0.1m,两板间距离d=0.4cm,有一束由相同微粒组成的带正电粒子流,以相同的初速度V0从两板中央依次水平射入(每隔0.1s射入一个微粒),由于重力作用微粒能落到下板,已知微粒质量m=2×10-6kg,电量q=l×10-8C,电容器电容C=l×10-6F。取g=10m/s2,整个装置处在真空中。求: (1)第一颗微粒落在下板离端点A距离为的O点,微粒射人的初速度V0应为多大? (2)以上述速度V0射入的带电微粒最多能有多少个落在下极板上?
如图,在竖直平面内有一固定光滑轨道,其中AB部分是倾角为37°的直轨道,BCD部分是以O为圆心、半径为R的圆弧轨道,两轨道相切于B点,D点与O点等高,A点在D点的正下方。质量为m的小球在沿斜面向上的拉力F作用下,从A点由静止开始做变加速直线运动,到达B点时撤去外力。已知小球刚好能沿圆轨道经过最高点C,然后经过D点落回到A点。已知sin37°=0.6,cos37°=0.8,重力加速度大小为g。求 (1)小球在C点的速度的大小; (2)小球在AB段运动过程,拉力F所做的功; (3)小球从D点运动到A点所用的时间。