一辆值勤的警车停在公路边,当警员发现从他旁边以v=8m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s,警车发动起来,以加速度a=2m/s2做匀加速运动,试问:(1)警车发动后还要经多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多少?
半径为R,均匀带正电荷的球体在空间产生球对称的电场;场强火小沿半径分布如图所示,图中E0已知,E-r曲线下O-R部分的面积等于R-2R部分的面积。 (1)写出E-r曲线下面积的单位; (2)己知带电球在r≥R处的场强E=kQ/r2,式中k为静电力常量,该均匀带电球所带的电荷量Q为多大? (3)求球心与球表面间的电势差△U; (4)质量为m,电荷量为q的负电荷在球面处需具有多大的速度可以刚好运动到2R处?
如图1所示,宽度为的竖直狭长区域内(边界为),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为,表示电场方向竖直向上。时,一带正电、质量为的微粒从左边界上的点以水平速度射入该区域,沿直线运动到点后,做一次完整的圆周运动,再沿直线运动到右边界上的点。为线段的中点,重力加速度为g。上述、、、、为已知量。 (1)求微粒所带电荷量和磁感应强度的大小; (2)求电场变化的周期; (3)改变宽度,使微粒仍能按上述运动过程通过相应宽度的区域,求的最小值。
如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场。带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。忽略重力的影响,求: (1)匀强电场场强E的大小; (2)粒子从电场射出时速度ν的大小; (3)粒子在磁场中做匀速圆周运动的半径R。
如图所示的平面直角坐标系xoy,在第Ⅰ象限内有平行于轴的匀强电场,方向沿正方向;在第Ⅳ象限的正三角形区域内有匀强电场,方向垂直于xoy平面向里,正三角形边长为L,且边与轴平行。一质量为、电荷量为的粒子,从轴上的点,以大小为的速度沿轴正方向射入电场,通过电场后从轴上的点进入第Ⅳ象限,又经过磁场从轴上的某点进入第Ⅲ象限,且速度与轴负方向成45°角,不计粒子所受的重力。求: (1)电场强度E的大小; (2)粒子到达点时速度的大小和方向; (3)区域内磁场的磁感应强度的最小值。
如图所示,在x轴下方的区域内存在+y方向的匀强电场,电场强度为E。在x轴上方以原点O为圆心、半径为R的半圆形区域内存在匀强磁场,磁场的方向垂直于xoy平面向外,磁感应强度为B。 y轴上的A点与O点的距离为d,一个质量为m、电荷量为q的带正电粒子从A点由静止释放,经电场加速后从O点射入磁场,不计粒子的重力。 (1)求粒子在磁场中运动的轨道半径r; (2)要使粒子进人磁场之后不再经过x轴,求电场强度的取值范围; (3)改变电场强度,使得粒子经过x轴时与x轴成θ=300的夹角,求此时粒子在磁场中的运动时间t及经过x轴的位置坐标值x0。