容积为20升的钢瓶充满氧气后,压强为30个大气压,打开钢瓶中的阀门,让氧气分装到容积为5升的小瓶中,若小瓶原来为真空,装到小瓶中的氧气压强为2个大气压,分装中无漏气且温度保持不变,那么最多能装多少个小瓶?
如图所示,物体放在倾角为30°的斜面上,静止不动,已知物体的重量是G=10N,水平推力F=5N。求:(1)物体对斜面的压力大小;(2)物体与斜面间的摩擦力大小。
在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:(1)粒子在磁场中运动的轨道半径R;(2)粒子在M点的初速度v0的大小;(3)粒子从M点运动到P点的总时间t.
质量为m,带电量为q的液滴以速度v沿与水平方向成45°角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.重力加速度为g.试求:(1)电场强度E和磁感应强度B各多大?(2)当液滴运动到某一点A时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的影响,求此后液滴做圆周运动的半径.
如图所示,两平行金属导轨间的距离l=0.40 m,金属导轨所在的平面与水平面夹角θ=37 °,在导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直且接触良好,导体棒与金属导轨接触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取10 m/s2。已知sin 37°=0.60,cos 37°=0.80,求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小;(3)导体棒受到的摩擦力大小.
如图所示,Ⅰ、Ⅱ、Ⅲ为电场和磁场的理想边界,一束电子(电量为e,质量为m,重力不计)由静止状态从P点经过Ⅰ、Ⅱ间的电场加速后垂直到达边界Ⅱ的Q点。匀强磁场的磁感应强度为B,磁场边界宽度为d,电子从磁场边界Ⅲ穿出时的速度方向与电子原来的入射方向夹角为30°。求:(1)电子在磁场中运动的时间t;(2)若改变PQ间的电势差,使电子刚好不能从边界Ⅲ射出,则此时PQ间的电势差U是多少?