一辆汽车以10m/S的速度沿平直公路自西向东匀速行驶。到达公路上的A点时一辆摩托车从A点由静止出发以2m/S2的加速度追赶该汽车。试求摩托车追上汽车前两者间距离大于21m的过程经历的时间。
如图所示的xOy坐标系中,y轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向里.P点的坐标为( 2L,0),Q1、Q2两点的坐标分别为(0, L),(0, -L).坐标为(,0)处的C点固定一平行于y轴放置的长为的绝缘弹性挡板,C为挡板中点,带电粒子与弹性绝缘挡板碰撞前后,沿y方向分速度不变,沿x方向分速度反向,大小不变. 带负电的粒子质量为m,电量为q,不计粒子所受重力.若粒子在P点沿PQ1方向进入磁场,经磁场运动后,求:(1)从Q1直接到达Q2处的粒子初速度大小;(2)从Q1直接到达O点,粒子第一次经过x轴的交点坐标;(3)只与挡板碰撞两次并能回到P点的粒子初速度大小.
(12分)提纯氘核技术对于核能利用具有重大价值.下图是从质子、氘核混合物中将质子和氘核分离的原理图,x轴上方有垂直于纸面向外的匀强磁场,初速度为0的质子、氘核混合物经电压为U的电场加速后,从x轴上的A()点沿与的方向进入第二象限(速度方向与磁场方向垂直),质子刚好从坐标原点离开磁场.已知质子、氘核的电荷量均为,质量分别为m、2m,忽略质子、氘核的重力及其相互作用.(1)求质子进入磁场时速度的大小;(2)求质子与氘核在磁场中运动的时间之比;(3)若在x轴上接收氘核,求接收器所在位置的横坐标.
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m带有电量为q的粒子以一定的速度,沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计粒子重力影响).(1)如果粒子恰好从A点射出磁场,求入射粒子的速度v1.(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图所示).求入射粒子的速度v2.
如图所示,虚线OC与y轴的夹角θ=60°,在此角范围内有一方向垂直于xOy平面向外、磁感应强度大小为B的匀强磁场。一质量为m、电荷量为q的带正电的粒子a(不计重力)从y轴的点M(0,L)沿x 轴的正方向射入磁场中。求:(1)要使粒子a离开磁场后垂直经过x轴,该粒子的初速度v1为多大;(2)若大量粒子a同时以v2=从M点沿xOy平面的各个方向射入磁场中,则从OC边界最先射出的粒子与最后射出的粒子的时间差。
如图所示,y轴上A点距坐标原点的距离为L,坐标平面内有边界过A点和坐标原点O的圆形匀强磁场区域,磁场方向垂直坐标平面向里。有一电子(质量为m、电荷量为e)从A点以初速度v0沿着x轴正方向射入磁场区域,并从x轴上的B点射出磁场区域,此时速度方向与x轴正方向之间的夹角为60°。求:(1)磁场的磁感应强度大小;(2)电子在磁场中运动的时间。