如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.
如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?
如图所示,长为2L的轻杆OB,O端装有转轴,B端固定一个质量为m的小球B,OB中点A固定一个质量为m的小球A,若OB杆从水平位置静止开始释放转到竖直位置的过程中,求: (1)A、B球摆到最低点的速度大小各是多少? (2)轻杆转到竖直位置时,角速度多大? (3)轻杆对A、B两球各做功多少? (4)A、B两球的机械能增量各是多少?
在检测某款电动车性能的实验中,质量为8×102 kg的电动车由静止开始沿平直公路行驶,达到的最大速度为15 m/s,利用传感器测得此过程中不同时刻电动车的牵引力F与对应的速度v,并描绘出F-图象(图中AB、BO均为直线),假设电动车图行驶中所受的阻力恒定,求此过程中: (1)电动车的额定功率; (2)电动车由静止开始运动,经过多长时间,速度达到2 m/s?
如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心。求: (1)卫星B的运行周期; (2)若卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,他们再一次相距最近?
水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2. (1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小; (2)求行李做匀加速直线运动的时间; (3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.