一球形人造卫星,其最大横截面积为A、质量为m,在轨道半径为R的高空绕地球做圆周运动。由于受到稀薄空气阻力的作用,导致卫星运行的轨道半径逐渐变小。卫星在绕地球运转很多圈之后,其轨道的高度下降了△H,由于△H <<R,所以可以将卫星绕地球运动的每一圈均视为匀速圆周运动。设地球可看成质量为M的均匀球体,万有引力常量为G。取无穷远处为零势能点,当卫星的运行轨道半径为r时,卫星与地球组成的系统具有的势能可表示为。
(1)求人造卫星在轨道半径为R的高空绕地球做圆周运动的周期;
(2)某同学为估算稀薄空气对卫星的阻力大小,做出了如下假设:卫星运行轨道范围内稀薄空气的密度为ρ,且为恒量;稀薄空气可看成是由彼此不发生相互作用的颗粒组成的,所有的颗粒原来都静止,它们与人造卫星在很短时间内发生碰撞后都具有与卫星相同的速度,在与这些颗粒碰撞的前后,卫星的速度可认为保持不变。在满足上述假设的条件下,请推导:
①估算空气颗粒对卫星在半径为R轨道上运行时,所受阻力F大小的表达式;
②估算人造卫星由半径为R的轨道降低到半径为R-△H的轨道的过程中,卫星绕地球运动圈数n的表达式。