如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d="40" cm。电源电动势E=24V,内电阻r="1" Ω,电阻R="15" Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度v0="4" m/s竖直向上射入板间。若小球带电量为q=1×10-2 C,质量为m=2×10-2 kg,不考虑空气阻力。那么,(1)滑动变阻器接入电路的阻值为多大时,小球恰能到达A板.(2)此时,电源的输出功率是多大.(取g="10" m/s2)
如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入速度方向跟ad边夹角θ = 30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求:①粒子能从ab边上射出磁场的速度v0的大小范围.②控制带电粒子的速度使其不从cd边射出,求粒子在磁场中运动的最长和最短时间.
如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力). ①在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标. ②在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置坐标应满足的条件.
如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为,物块飞离桌面后由P点沿切线落入圆轨道。g=10m/s2,求: ⑴BP间的水平距离。 ⑵判断m2能否沿圆轨道到达M点 ⑶释放后m2运动过程中克服摩擦力做的功
如图所示,无动力传送带水平放置,传送带的质量M=4kg,长L=5m,轮与轴间的摩擦及轮的质量均不计。质量为m=2kg的工件从光滑弧面上高为h=0.45m的a点由静止开始下滑,到b点又滑上静止的传送带,工件与皮带之间的动摩擦因数, 求 ⑴工件离开传送带时的速度 ⑵工件在传送带上运动时的时间 ⑶系统损失的机械能
如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形(不计粒子所受重力).在该区域AB边的中点处由静止释放电子,求: (1)电子进入电场II时的速度? (2)电子离开ABCD区域的位置? (3)电子从释放开始到离开电场II过程中所经历的时间?