如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d="40" cm。电源电动势E=24V,内电阻r="1" Ω,电阻R="15" Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度v0="4" m/s竖直向上射入板间。若小球带电量为q=1×10-2 C,质量为m=2×10-2 kg,不考虑空气阻力。那么,(1)滑动变阻器接入电路的阻值为多大时,小球恰能到达A板.(2)此时,电源的输出功率是多大.(取g="10" m/s2)
有人利用安装在气球载人舱内的单摆来确定气球的高度。已知该单摆在海平面处的周期是T0。当气球停在某一高度时,测得该单摆周期为T.求该气球此时离海平面的高度h。把地球看作质量均匀分布的半径为R的球体。
如图所示,一块涂有炭黑玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上运动。一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得 OA=1cm,OB=4cm,OC=9cm.求外力F的大小。(g=10m/s2,不计阻力)
弹簧振子以O点为平衡位置在B、C两点之间做简谐运动.B、C相距20 cm.某时刻振子处于B点.经过0.5 s,振子首次到达C点.求:(1)振动的周期和频率;(2)振子在5 s内通过的路程及位移大小;(3)振子在B点的加速度大小跟它距O点4 cm处P点的加速度大小的比值.
图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B,两个区域的高度都为L。一质量为m、电阻为R、边长也为L的单匝矩形导线框abcd,从磁场区域上方某处竖直自由下落,ab边保持水平且线框不发生转动。当ab边刚进入区域1时,线框恰开始做匀速运动;当线框的ab边下落到区域2的中间位置时,线框恰又开始做匀速运动。求:(1)当ab边刚进入区域1时做匀速运动的速度v1;(2)当ab边刚进入磁场区域2时,线框的加速度的大小与方向;(3)线框从开始运动到ab边刚要离开磁场区域2时的下落过程中产生的热量Q。
如图所示,两根平行金属导轨相距L,上端接有直流电源,电源电动势为E,内阻为r,导轨的倾斜部分与水平面成θ角,水平部分右端与阻值为R的电阻相连。倾斜部分存在垂直斜面向上的匀强磁场,水平部分存在垂直水平面向下的匀强磁场,两部分磁场的磁感应强度大小相等。倾斜导轨与水平导轨光滑连接,金属棒a与导轨接触良好,质量为m,电阻也为R。金属导轨固定不动且电阻不计。不计一切摩擦。导轨的倾斜部分和水平部分都足够长。求:(1)开关闭合时,金属棒a恰能处于静止状态,求匀强磁场磁感应强度的大小?(2)断开开关,从静止释放金属棒a,在金属棒a进入水平轨道后,电路中产生的最大焦耳热为多少?