倾斜的传送带以恒定的速率沿逆时针方向运行,如图甲所示,在t=0时,将质量m=2.0kg的小物块轻放在传送带上A点处,2s时物块从B点离开传送带,物块速度随时间变化的图象如图乙所示,设沿传送带向下为运动的正方向,取重力加速度g=10m/s2。求:⑴0~1s内物块所受的合外力大小;⑵小物块与传送带之间的动摩擦因数;⑶在0~2s内由于小物块与皮带间的摩擦所产生的热量。
分别用λ和λ的单色光照射同一金属,发出的光电子的最大初动能之比为1∶2.以h表示普朗克常量,c表示真空中的光速,则此金属板的逸出功是多大?
如图所示,光滑水平面上静止放置质量M = 2kg,长L = 0.84m的长木板C;离板左端S = 0.12m处静止放置质量mA =1kg的小物块A,A与C间的动摩擦因数μ = 0.4;在板右端静止放置质量mB = 1kg的小物块B,B与C间的摩擦忽略不计.设最大静摩擦力等于滑动摩擦力,A、B均可视为质点,g = 10m/s2.现在木板上加一水平向右的力F,问:(1)当F = 9N时,小物块A的加速度为多大?(2)若F足够大,则A与B碰撞之前运动的最短时间是多少?(3)若在A与B发生弹性碰撞时撤去力F,A最终能滑出C,则F的取值范围是多少?
如图甲所示,静止在粗糙水平面上的正三角形金属线框,匝数N=10、总电阻R = 2.5Ω、边长L = 0.3m,处在两个半径均为r =的圆形匀强磁场区域中,线框顶点与右侧圆形中心重合,线框底边中点与左侧圆形中心重合.磁感应强度B1垂直水平面向外,大小不变、B2垂直水平面向里,大小随时间变化,B1、B2的值如图乙所示.线框与水平面间的最大静摩擦力f =" 0.6N" ,(取),求:(1)t = 0时刻穿过线框的磁通量;(2)线框滑动前的电流强度及电功率;(3)经过多长时间线框开始滑动及在此过程中产生的热量.
如图,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N。一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g)。(1)判断小球的带电性质并求出其所带电荷量;(2)P点距坐标原点O至少多高;(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间小球距坐标原点O的距离s为多远?
如图甲所示,水平加速电场的加速电压为U0,在它的右侧有由水平正对放置的平行金属板a、b构成的偏转电场,已知偏转电场的板长L="0.10" m,板间距离d=5.0×10-2m,两板间接有如图15乙所示的随时间变化的电压U,且a板电势高于b板电势。在金属板右侧存在有界的匀强磁场,磁场的左边界为与金属板右侧重合的竖直平面MN,MN右侧的磁场范围足够大,磁感应强度B=5.0×10-3T,方向与偏转电场正交向里(垂直纸面向里)。质量和电荷量都相同的带正电的粒子从静止开始经过电压U0=50V的加速电场后,连续沿两金属板间的中线OO′方向射入偏转电场中,中线OO′与磁场边界MN垂直。已知带电粒子的比荷=1.0×108C/kg,不计粒子所受的重力和粒子间的相互作用力,忽略偏转电场两板间电场的边缘效应,在每个粒子通过偏转电场区域的极短时间内,偏转电场可视作恒定不变。(1)求t=0时刻射入偏转电场的粒子在磁场边界上的入射点和出射点间的距离;(2)求粒子进入磁场时的最大速度;(3)对于所有进入磁场中的粒子,如果要增大粒子在磁场边界上的入射点和出射点间的距离,应该采取哪些措施?试从理论上推理说明。