通过天文观测发现某行星的卫星运动的周期为T,轨道半径为r,若把卫星的运动近似看成匀速圆周运动,行星的半径为R,试求出该行星的质量和密度。(万有引力常量G已知)
回旋加速器是用于加速带电粒子流,使之获得很大动能的仪器,其核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒间狭缝中形成匀强电场,使粒子每穿过狭缝都得到加速;两盒放在匀强磁场中,磁场方向垂直于盒底面.离子源置于盒的圆心,释放出电量为q、质量为m的离子,离子最大回旋半径为Rm,磁场强度为B,其运动轨迹如图所示.求:(1)离子离开加速器时速度多大?(2)设离子初速度为零,两D形盒间电场的电势差为U,盒间距离为d,求加速到上述能量所需时间(粒子在缝中时间不忽略)。
质量均为m的两个可视为质点的小球A、B,分别被长为L的绝缘细线悬挂在同一点O,给A、B分别带上一定量的正电荷,并用水平向右的外力作用在A球上,平衡以后,悬挂A球的细线竖直,悬挂B球的细线向右偏60°角,如图所示.若A球的带电量为q,则:(1)B球的带量为多少;(2)水平外力多大.
如图所示,在平行金属带电极板MN电场中将电荷量为﹣4×10﹣6C的点电荷从A点移到M板,电场力做负功8×10﹣4J,把该点电荷从A点移到N板,电场力做正功为4×10﹣4,N板接地.则(1)A点的电势φA是多少?(2)UMN等于多少伏?(3)M板的电势φM是多少?
如图所示,用30cm的细线将质量为4×10﹣5 kg的带电小球P悬挂在O点下,当空中有方向为水平向右,大小为1×104N/C的匀强电场时,小球偏转37°后处在静止状态.已知sin37°=0.6,cos37°=0.8.(1)分析小球的带电性质(2)求小球的带电量(3)求此时细线的拉力.
如图所示,在正的点电荷Q的电场中有a、b两点,它们到点电荷Q的距离r1<r2.求:(l)a、b两点哪点电势高?(2)将一负电荷放在a、b两点,哪点电势能较大?(3)若a、b两点问的电势差为100V,将电荷量为3.2×10﹣19C由a点移到b点是电场力对电荷做功还是电荷克服电场力做功?做功多少?