均匀导线制成的单位正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m。将其置于磁感强度为B的水平匀强磁场上方h处,如图所示。线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行。当cd边刚进入磁场时,(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件。
如下图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°由静止释放,小球到达最低点时与Q发生完全弹性正碰。已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,平板车与Q的质量关系是M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车P时,P和Q的速度大小? (2)平板车P的长度为多少?(3)小物块Q落地时与平板车P的水平距离为多少?
(18分)如图,电阻不计且足够长的U型金属框架放置在倾角θ=37°的绝缘斜面上,该装置处于垂直斜面向下的匀强磁场中,磁感应强度大小B=0.5T。质量m=0.1kg、电阻R=0.4Ω的导体棒ab垂直放在框架上,从静止开始沿框架无摩擦下滑,与框架接触良好。框架的质量M=0.2kg、宽度l=0.4m,框架与斜面间的动摩擦因数μ=0.6,与斜面间最大静摩擦力等于滑动摩擦力,g取10m/s2,sin37°=0.6,cos37°=0.8。(1)若框架固定,求导体棒的最大速度vm;(2)若框架固定,棒从静止开始下滑6.0m时速度v=4.0m/s,求此过程回路中产生的热量Q及流过ab棒的电量q;(3)若框架不固定,求当框架刚开始运动时棒的速度v2。
如图所示,两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可以不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度,在这一过程中( )
如图甲所示,水平面上固定一个倾角为θ的光滑足够长斜面,斜面顶端有一光滑的轻质定滑轮,跨过定滑轮的轻细绳两端分别连接物块A和B(可看作质点),开始A、B离水平地面的高度H=0.5m,A的质量m0=0.8kg。当B的质量m连续变化时,可以得到A的加速度变化图线如乙图所示,图中虚线为渐近线,设加速度沿斜面向上的方向为正方向,不计空气阻力,重力加速度为g取10m/s2。求:⑴斜面的倾角θ;⑵图乙中a0值;⑶若m=1.2kg,由静止同时释放A、B后,A上升离水平地面的最大高度(设B着地后不反弹)。
如图所示装置由水平轨道、倾角θ=37°的倾斜轨道连接而成,轨道所在空间存在磁感应强度大小为B、方向竖直向上的匀强磁场。质量m、长度L、电阻R的导体棒ab置于倾斜轨道上,刚好不下滑;质量、长度、电阻与棒ab相同的光滑导体棒cd置于水平轨道上,用恒力F拉棒cd,使之在水平轨道上向右运动。棒ab、cd与导轨垂直,且两端与导轨保持良好接触,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8。⑴求棒ab与导轨间的动摩擦因数;⑵求当棒ab刚要向上滑动时cd速度v的大小;⑶若从cd刚开始运动到ab刚要上滑过程中,cd在水平轨道上移动的距离x,求此过程中ab上产生热量Q。