如图所示,质量为m、电荷量为q的带负电粒子(不计重力)。由0点静止释放进入宽为L的匀强电场,经电压为U加速后又进入磁感应强度为B的匀强磁场,磁场区域如图所示。(1)带电粒子进入磁场时的速度大小;(2)若带点粒子能够再次返回入射边界,则磁场的最小宽度为多大;(3)若满足(2)的条件,则带点粒子在电场和磁场中运动的总时间为多少。
如图所示,一小球从A点以某一水平向右的初速度出发,沿水平直线轨道运动到B点后,进入半径R=10cm的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C点运动,C点右侧有一壕沟,C、D两点的竖直高度h=0.8m,水平距离s=1.2m,水平轨道AB长为L1=1m,BC长为L2=3m,.小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则:(1)若小球恰能通过圆形轨道的最高点,求小球在A点的初速度?(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A点的初速度的范围是多少?
如图所示,在光滑水平地面上放置质量M=2kg的长木板,木板上表面与固定的竖直弧形轨道相切。一质量m=1kg的小滑块自A点沿弧面由静止滑下,A点距离长木板上表面高度h=0.6m。滑块在木板上滑行t=1s后,和木板以共同速度v =1m/s匀速运动,取g=10m/s2。求:(1) 滑块与木板间的摩擦力(2) 滑块沿弧面下滑过程中克服摩擦力做的功(3) 滑块相对木板滑行的距离
如图所示,可视为质点的总质量(包括装备)为m=60kg的滑板运动员,从高为H=15m的斜面AB的顶端A点由静止开始沿斜面下滑,在点进入光滑的四分之一圆弧BC,圆弧BC半径为R=5m,运动员经C点沿竖直轨道冲出向上运动,经时间t=2s后又落回轨道。若运动员经C点后在空中运动时只受重力,轨道AB段粗糙、BC段光滑。g=10m/s2。求:(1)运动员在C点的速度和离开C点可上升的高度。(2)运动员(包括装备)运动到圆轨道最低点B时对轨道的压力大小。(3)从A点到B点,运动员损失的机械能。
16分)如图甲所示,空间存在一垂直纸面向里的水平磁场,磁场上边界OM水平,以O点为坐标原点,OM为x轴,竖直向下为y轴,磁感应强度大小在x方向保持不变、y轴方向按B=ky变化,k为大于零的常数。一质量为m、电阻为R、边长为L的正方形线框abcd从图示位置静止释放,运动过程中线框经络在同一竖直平面内,当线框下降h0(h0<L)高度时达到最大速度,线框cd边进入磁场时开始做匀速运动,重力加速度为g。求:(1)线框下降h0高度时速度大小v1和匀速运动时速度大小v2;(2)线框从开始释放到cd边刚进入磁场的过程中产生的电能ΔE;(3)若将线框从图示位置以水平向右的速度v0抛出,在图乙中大致画出线框上a点的轨迹。
如图所示,在xoy平面内第二象限的某区域存在一个矩形匀强磁场区,磁场方向垂直xoy平面向里,边界分别平利于x轴和y轴。一电荷量为e、质量为m的电子,从坐标原点为O以速度v0射入第二象限,速度方向与y轴正方向成45°角,经过磁场偏转后,通过P(0,a)点,速度方向垂直于y轴,不计电子的重力。(1)若磁场的磁感应强度大小为B0,求电子在磁场中运动的时间t;(2)为使电子完成上述运动,求磁感应强度的大小应满足的条件;(3)若电子到达y轴上P点时,撤去矩形匀强磁场,同时在y轴右侧加方向垂直xoy平面向里的匀强磁场,磁感应强度大小为B1,在y轴左侧加方向垂直xoy平面向里的匀强电场,电子在第(k+1)次从左向右经过y轴(经过P点为第1次)时恰好通过坐标原点。求y轴左侧磁场磁感应强度大小B2及上述过程电子的运动时间t。