如图所示,一个小球以v0=8.0 m/s速度从圆弧轨道的O点水平抛出,恰好能沿着斜面所在的方向落在Q点。已知斜面光滑,斜面与水平面的夹角为θ=37°,斜面的高度为h=15 m.忽略空气阻力的影响,重力加速度为g=10 m/s2。求小球从O点抛出到斜面底端的M点所用的总时间。(保留两位有效数字)
(14分)如图所示为一水平传送带装置示意图。A、B为传送带的左、右端点,AB长L=2m,初始时传送带处于静止状态,当质量m=2kg的物体(可视为质点)轻放在传送带A点时,传送带立即启动,启动过程可视为加速度a=2的匀加速运动,加速结束后传送带立即匀速转动。已知物体与传送带间动摩擦因数=0.1,设最大静摩擦力等于滑动摩擦力,g取l0。(1)如果物块以最短时间到达B点,物块到达B点时的速度大小是多少?(2)上述情况下传送带至少加速运动多长时间?
如图所示,在真空中,半径为R的虚线所围的圆形区域内只存在垂直纸面向外的匀强磁场。有一电荷量为q、质量为m的带正电粒子,以速率V0从圆周上的P点沿垂直于半径OOl并指向圆心O的方向进入磁场,从圆周上的O1点飞出磁场后沿两板的中心线O1O2射入平行金属板M和N, O1O2与磁场区域的圆心O在同一直线上。板间存在匀强电场,两板间的电压为U,两板间距为d。不计粒子所受重力。求:(1)磁场的磁感应强度B的大小;(2)粒子在磁场中运动的时间;(3)粒子在两平行板间运动过程中的最大速度与板长L的关系。
(18分)如图所示,一滑板B静止在水平面上,上表面所在平面与固定于竖直平面内、半径为R的1/4圆形光滑轨道相切于Q。一物块A从圆形轨道与圆心等高的P点无初速度释放,当物块经过Q点滑上滑板之后即刻受到大小F=2μmg、水平向左的恒力持续作用。已知物块、滑板的质量均为m,滑板与水平面间的动摩擦因数μ,物块与滑板间的动摩擦因数3μ,物块可视为质点,重力加速度取g.(1)求物块滑到Q点的速度大小;(2)通过计算判断物块在滑板上滑行过程中,滑板是否滑动;(3)滑板足够长,求物块A与滑板B之间产生的内能?
如图甲所示,BCD为竖直放置的半径R=0.20m的半圆形轨道,在半圆形轨道的最低位置B和最高位置D均安装了压力传感器,可测定小物块通过这两处时对轨道的压力FB和FD。半圆形轨道在B位置与水平直轨道AB平滑连接,在D位置与另一水平直轨道EF相对,其间留有可让小物块通过的缝隙。一质量m=0.20kg的小物块P(可视为质点),以不同的初速度从M点沿水平直轨道AB滑行一段距离,进入半圆形轨道BCD经过D位置后平滑进入水平直轨道EF。一质量为2m的小物块Q(可视为质点)被锁定在水平直轨道EF上,其右侧固定一个劲度系数为k=500N/m的轻弹簧。如果对小物块Q施加的水平力F≥30N,则它会瞬间解除锁定沿水平直轨道EF滑行,且在解除锁定的过程中无能量损失。已知弹簧的弹性势能公式,其中k为弹簧的劲度系数,x为弹簧的形变量。g取10m/s2。(1)通过传感器测得的FB和FD的关系图线如图乙所示。若轨道各处均不光滑,且已知轨道与小物块P之间的动摩擦因数μ=0.10,MB之间的距离xMB=0.50m。当 FB=18N时,求:①小物块P通过B位置时的速度vB的大小;②小物块P从M点运动到轨道最高位置D的过程中损失的总机械能;(2)若轨道各处均光滑,在某次实验中,测得P经过B位置时的速度大小为m/s。求在弹簧被压缩的过程中,弹簧的最大弹性势能。
洋流又叫海流,指大洋表层海水常年大规模的沿一定方向较为稳定的流动。因为海水中含有大量的正、负离子,这些离子随海流做定向运动,如果有足够强的磁场能使海流中的正、负离子发生偏转,便可用来发电。图为利用海流发电的磁流体发电机原理示意图,其中的发电管道是长为L、宽为d、高为h的矩形水平管道。发电管道的上、下两面是绝缘板,南、北两侧面M、N是电阻可忽略的导体板。两导体板与开关S和定值电阻R相连。整个管道置于方向竖直向上、磁感应强度大小为B的匀强磁场中。为了简化问题,可以认为:开关闭合前后,海水在发电管道内以恒定速率v朝正东方向流动,发电管道相当于电源,M、N两端相当于电源的正、负极,发电管道内海水的电阻为r(可视为电源内阻)。管道内海水所受的摩擦阻力保持不变,大小为f。不计地磁场的影响。(1)判断M、N两端哪端是电源的正极,并求出此发电装置产生的电动势;(2)要保证发电管道中的海水以恒定的速度流动,发电管道进、出口两端要保持一定的压力差。请推导当开关闭合后,发电管两端压力差F与发电管道中海水的流速v之间的关系;(3)发电管道进、出口两端压力差F的功率可视为该发电机的输入功率,定值电阻R消耗的电功率与输入功率的比值可定义为该发电机的效率。求开关闭合后,该发电机的效率η;在发电管道形状确定、海水的电阻r、外电阻R和管道内海水所受的摩擦阻力f保持不变的情况下,要提高该发电机的效率,简述可采取的措施。